Blame view
tools/openfst-1.6.7/include/fst/prune.h
12.5 KB
8dcb6dfcb first commit |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 |
// See www.openfst.org for extensive documentation on this weighted // finite-state transducer library. // // Functions implementing pruning. #ifndef FST_PRUNE_H_ #define FST_PRUNE_H_ #include <type_traits> #include <utility> #include <vector> #include <fst/log.h> #include <fst/arcfilter.h> #include <fst/heap.h> #include <fst/shortest-distance.h> namespace fst { namespace internal { template <class StateId, class Weight> class PruneCompare { public: PruneCompare(const std::vector<Weight> &idistance, const std::vector<Weight> &fdistance) : idistance_(idistance), fdistance_(fdistance) {} bool operator()(const StateId x, const StateId y) const { const auto wx = Times(IDistance(x), FDistance(x)); const auto wy = Times(IDistance(y), FDistance(y)); return less_(wx, wy); } private: Weight IDistance(const StateId s) const { return s < idistance_.size() ? idistance_[s] : Weight::Zero(); } Weight FDistance(const StateId s) const { return s < fdistance_.size() ? fdistance_[s] : Weight::Zero(); } const std::vector<Weight> &idistance_; const std::vector<Weight> &fdistance_; NaturalLess<Weight> less_; }; } // namespace internal template <class Arc, class ArcFilter> struct PruneOptions { using StateId = typename Arc::StateId; using Weight = typename Arc::Weight; PruneOptions(const Weight &weight_threshold, StateId state_threshold, ArcFilter filter, std::vector<Weight> *distance = nullptr, float delta = kDelta, bool threshold_initial = false) : weight_threshold(std::move(weight_threshold)), state_threshold(state_threshold), filter(std::move(filter)), distance(distance), delta(delta), threshold_initial(threshold_initial) {} // Pruning weight threshold. Weight weight_threshold; // Pruning state threshold. StateId state_threshold; // Arc filter. ArcFilter filter; // If non-zero, passes in pre-computed shortest distance to final states. const std::vector<Weight> *distance; // Determines the degree of convergence required when computing shortest // distances. float delta; // Determines if the shortest path weight is left (true) or right // (false) multiplied by the threshold to get the limit for // keeping a state or arc (matters if the semiring is not // commutative). bool threshold_initial; }; // Pruning algorithm: this version modifies its input and it takes an options // class as an argument. After pruning the FST contains states and arcs that // belong to a successful path in the FST whose weight is no more than the // weight of the shortest path Times() the provided weight threshold. When the // state threshold is not kNoStateId, the output FST is further restricted to // have no more than the number of states in opts.state_threshold. Weights must // have the path property. The weight of any cycle needs to be bounded; i.e., // // Plus(weight, Weight::One()) == Weight::One() template <class Arc, class ArcFilter, typename std::enable_if< (Arc::Weight::Properties() & kPath) == kPath>::type * = nullptr> void Prune(MutableFst<Arc> *fst, const PruneOptions<Arc, ArcFilter> &opts) { using StateId = typename Arc::StateId; using Weight = typename Arc::Weight; using StateHeap = Heap<StateId, internal::PruneCompare<StateId, Weight>>; auto ns = fst->NumStates(); if (ns < 1) return; std::vector<Weight> idistance(ns, Weight::Zero()); std::vector<Weight> tmp; if (!opts.distance) { tmp.reserve(ns); ShortestDistance(*fst, &tmp, true, opts.delta); } const auto *fdistance = opts.distance ? opts.distance : &tmp; if ((opts.state_threshold == 0) || (fdistance->size() <= fst->Start()) || ((*fdistance)[fst->Start()] == Weight::Zero())) { fst->DeleteStates(); return; } internal::PruneCompare<StateId, Weight> compare(idistance, *fdistance); StateHeap heap(compare); std::vector<bool> visited(ns, false); std::vector<size_t> enqueued(ns, StateHeap::kNoKey); std::vector<StateId> dead; dead.push_back(fst->AddState()); NaturalLess<Weight> less; auto s = fst->Start(); const auto limit = opts.threshold_initial ? Times(opts.weight_threshold, (*fdistance)[s]) : Times((*fdistance)[s], opts.weight_threshold); StateId num_visited = 0; if (!less(limit, (*fdistance)[s])) { idistance[s] = Weight::One(); enqueued[s] = heap.Insert(s); ++num_visited; } while (!heap.Empty()) { s = heap.Top(); heap.Pop(); enqueued[s] = StateHeap::kNoKey; visited[s] = true; if (less(limit, Times(idistance[s], fst->Final(s)))) { fst->SetFinal(s, Weight::Zero()); } for (MutableArcIterator<MutableFst<Arc>> aiter(fst, s); !aiter.Done(); aiter.Next()) { auto arc = aiter.Value(); // Copy intended. if (!opts.filter(arc)) continue; const auto weight = Times(Times(idistance[s], arc.weight), arc.nextstate < fdistance->size() ? (*fdistance)[arc.nextstate] : Weight::Zero()); if (less(limit, weight)) { arc.nextstate = dead[0]; aiter.SetValue(arc); continue; } if (less(Times(idistance[s], arc.weight), idistance[arc.nextstate])) { idistance[arc.nextstate] = Times(idistance[s], arc.weight); } if (visited[arc.nextstate]) continue; if ((opts.state_threshold != kNoStateId) && (num_visited >= opts.state_threshold)) { continue; } if (enqueued[arc.nextstate] == StateHeap::kNoKey) { enqueued[arc.nextstate] = heap.Insert(arc.nextstate); ++num_visited; } else { heap.Update(enqueued[arc.nextstate], arc.nextstate); } } } for (StateId i = 0; i < visited.size(); ++i) { if (!visited[i]) dead.push_back(i); } fst->DeleteStates(dead); } template <class Arc, class ArcFilter, typename std::enable_if< (Arc::Weight::Properties() & kPath) != kPath>::type * = nullptr> void Prune(MutableFst<Arc> *fst, const PruneOptions<Arc, ArcFilter> &) { FSTERROR() << "Prune: Weight needs to have the path property: " << Arc::Weight::Type(); fst->SetProperties(kError, kError); } // Pruning algorithm: this version modifies its input and takes the // pruning threshold as an argument. It deletes states and arcs in the // FST that do not belong to a successful path whose weight is more // than the weight of the shortest path Times() the provided weight // threshold. When the state threshold is not kNoStateId, the output // FST is further restricted to have no more than the number of states // in opts.state_threshold. Weights must have the path property. The // weight of any cycle needs to be bounded; i.e., // // Plus(weight, Weight::One()) == Weight::One() template <class Arc> void Prune(MutableFst<Arc> *fst, typename Arc::Weight weight_threshold, typename Arc::StateId state_threshold = kNoStateId, float delta = kDelta) { const PruneOptions<Arc, AnyArcFilter<Arc>> opts( weight_threshold, state_threshold, AnyArcFilter<Arc>(), nullptr, delta); Prune(fst, opts); } // Pruning algorithm: this version writes the pruned input FST to an // output MutableFst and it takes an options class as an argument. The // output FST contains states and arcs that belong to a successful // path in the input FST whose weight is more than the weight of the // shortest path Times() the provided weight threshold. When the state // threshold is not kNoStateId, the output FST is further restricted // to have no more than the number of states in // opts.state_threshold. Weights have the path property. The weight // of any cycle needs to be bounded; i.e., // // Plus(weight, Weight::One()) == Weight::One() template <class Arc, class ArcFilter, typename std::enable_if<IsPath<typename Arc::Weight>::value>::type * = nullptr> void Prune(const Fst<Arc> &ifst, MutableFst<Arc> *ofst, const PruneOptions<Arc, ArcFilter> &opts) { using StateId = typename Arc::StateId; using Weight = typename Arc::Weight; using StateHeap = Heap<StateId, internal::PruneCompare<StateId, Weight>>; ofst->DeleteStates(); ofst->SetInputSymbols(ifst.InputSymbols()); ofst->SetOutputSymbols(ifst.OutputSymbols()); if (ifst.Start() == kNoStateId) return; NaturalLess<Weight> less; if (less(opts.weight_threshold, Weight::One()) || (opts.state_threshold == 0)) { return; } std::vector<Weight> idistance; std::vector<Weight> tmp; if (!opts.distance) ShortestDistance(ifst, &tmp, true, opts.delta); const auto *fdistance = opts.distance ? opts.distance : &tmp; if ((fdistance->size() <= ifst.Start()) || ((*fdistance)[ifst.Start()] == Weight::Zero())) { return; } internal::PruneCompare<StateId, Weight> compare(idistance, *fdistance); StateHeap heap(compare); std::vector<StateId> copy; std::vector<size_t> enqueued; std::vector<bool> visited; auto s = ifst.Start(); const auto limit = opts.threshold_initial ? Times(opts.weight_threshold, (*fdistance)[s]) : Times((*fdistance)[s], opts.weight_threshold); while (copy.size() <= s) copy.push_back(kNoStateId); copy[s] = ofst->AddState(); ofst->SetStart(copy[s]); while (idistance.size() <= s) idistance.push_back(Weight::Zero()); idistance[s] = Weight::One(); while (enqueued.size() <= s) { enqueued.push_back(StateHeap::kNoKey); visited.push_back(false); } enqueued[s] = heap.Insert(s); while (!heap.Empty()) { s = heap.Top(); heap.Pop(); enqueued[s] = StateHeap::kNoKey; visited[s] = true; if (!less(limit, Times(idistance[s], ifst.Final(s)))) { ofst->SetFinal(copy[s], ifst.Final(s)); } for (ArcIterator<Fst<Arc>> aiter(ifst, s); !aiter.Done(); aiter.Next()) { const auto &arc = aiter.Value(); if (!opts.filter(arc)) continue; const auto weight = Times(Times(idistance[s], arc.weight), arc.nextstate < fdistance->size() ? (*fdistance)[arc.nextstate] : Weight::Zero()); if (less(limit, weight)) continue; if ((opts.state_threshold != kNoStateId) && (ofst->NumStates() >= opts.state_threshold)) { continue; } while (idistance.size() <= arc.nextstate) { idistance.push_back(Weight::Zero()); } if (less(Times(idistance[s], arc.weight), idistance[arc.nextstate])) { idistance[arc.nextstate] = Times(idistance[s], arc.weight); } while (copy.size() <= arc.nextstate) copy.push_back(kNoStateId); if (copy[arc.nextstate] == kNoStateId) { copy[arc.nextstate] = ofst->AddState(); } ofst->AddArc(copy[s], Arc(arc.ilabel, arc.olabel, arc.weight, copy[arc.nextstate])); while (enqueued.size() <= arc.nextstate) { enqueued.push_back(StateHeap::kNoKey); visited.push_back(false); } if (visited[arc.nextstate]) continue; if (enqueued[arc.nextstate] == StateHeap::kNoKey) { enqueued[arc.nextstate] = heap.Insert(arc.nextstate); } else { heap.Update(enqueued[arc.nextstate], arc.nextstate); } } } } template <class Arc, class ArcFilter, typename std::enable_if<!IsPath<typename Arc::Weight>::value>::type * = nullptr> void Prune(const Fst<Arc> &, MutableFst<Arc> *ofst, const PruneOptions<Arc, ArcFilter> &) { FSTERROR() << "Prune: Weight needs to have the path property: " << Arc::Weight::Type(); ofst->SetProperties(kError, kError); } // Pruning algorithm: this version writes the pruned input FST to an // output MutableFst and simply takes the pruning threshold as an // argument. The output FST contains states and arcs that belong to a // successful path in the input FST whose weight is no more than the // weight of the shortest path Times() the provided weight // threshold. When the state threshold is not kNoStateId, the output // FST is further restricted to have no more than the number of states // in opts.state_threshold. Weights must have the path property. The // weight of any cycle needs to be bounded; i.e., // // Plus(weight, Weight::One()) = Weight::One(); template <class Arc> void Prune(const Fst<Arc> &ifst, MutableFst<Arc> *ofst, typename Arc::Weight weight_threshold, typename Arc::StateId state_threshold = kNoStateId, float delta = kDelta) { const PruneOptions<Arc, AnyArcFilter<Arc>> opts( weight_threshold, state_threshold, AnyArcFilter<Arc>(), nullptr, delta); Prune(ifst, ofst, opts); } } // namespace fst #endif // FST_PRUNE_H_ |