Blame view
tools/openfst-1.6.7/include/fst/queue.h
26 KB
8dcb6dfcb first commit |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 |
// See www.openfst.org for extensive documentation on this weighted // finite-state transducer library. // // Functions and classes for various FST state queues with a unified interface. #ifndef FST_QUEUE_H_ #define FST_QUEUE_H_ #include <deque> #include <memory> #include <type_traits> #include <utility> #include <vector> #include <fst/log.h> #include <fst/arcfilter.h> #include <fst/connect.h> #include <fst/heap.h> #include <fst/topsort.h> namespace fst { // The Queue interface is: // // template <class S> // class Queue { // public: // using StateId = S; // // // Constructor: may need args (e.g., FST, comparator) for some queues. // Queue(...) override; // // // Returns the head of the queue. // StateId Head() const override; // // // Inserts a state. // void Enqueue(StateId s) override; // // // Removes the head of the queue. // void Dequeue() override; // // // Updates ordering of state s when weight changes, if necessary. // void Update(StateId s) override; // // // Is the queue empty? // bool Empty() const override; // // // Removes all states from the queue. // void Clear() override; // }; // State queue types. enum QueueType { TRIVIAL_QUEUE = 0, // Single state queue. FIFO_QUEUE = 1, // First-in, first-out queue. LIFO_QUEUE = 2, // Last-in, first-out queue. SHORTEST_FIRST_QUEUE = 3, // Shortest-first queue. TOP_ORDER_QUEUE = 4, // Topologically-ordered queue. STATE_ORDER_QUEUE = 5, // State ID-ordered queue. SCC_QUEUE = 6, // Component graph top-ordered meta-queue. AUTO_QUEUE = 7, // Auto-selected queue. OTHER_QUEUE = 8 }; // QueueBase, templated on the StateId, is a virtual base class shared by all // queues considered by AutoQueue. template <class S> class QueueBase { public: using StateId = S; virtual ~QueueBase() {} // Concrete implementation. explicit QueueBase(QueueType type) : queue_type_(type), error_(false) {} void SetError(bool error) { error_ = error; } bool Error() const { return error_; } QueueType Type() const { return queue_type_; } // Virtual interface. virtual StateId Head() const = 0; virtual void Enqueue(StateId) = 0; virtual void Dequeue() = 0; virtual void Update(StateId) = 0; virtual bool Empty() const = 0; virtual void Clear() = 0; private: QueueType queue_type_; bool error_; }; // Trivial queue discipline; one may enqueue at most one state at a time. It // can be used for strongly connected components with only one state and no // self-loops. template <class S> class TrivialQueue : public QueueBase<S> { public: using StateId = S; TrivialQueue() : QueueBase<StateId>(TRIVIAL_QUEUE), front_(kNoStateId) {} virtual ~TrivialQueue() = default; StateId Head() const final { return front_; } void Enqueue(StateId s) final { front_ = s; } void Dequeue() final { front_ = kNoStateId; } void Update(StateId) final {} bool Empty() const final { return front_ == kNoStateId; } void Clear() final { front_ = kNoStateId; } private: StateId front_; }; // First-in, first-out queue discipline. // // This is not a final class. template <class S> class FifoQueue : public QueueBase<S> { public: using StateId = S; FifoQueue() : QueueBase<StateId>(FIFO_QUEUE) {} virtual ~FifoQueue() = default; StateId Head() const override { return queue_.back(); } void Enqueue(StateId s) override { queue_.push_front(s); } void Dequeue() override { queue_.pop_back(); } void Update(StateId) override {} bool Empty() const override { return queue_.empty(); } void Clear() override { queue_.clear(); } private: std::deque<StateId> queue_; }; // Last-in, first-out queue discipline. template <class S> class LifoQueue : public QueueBase<S> { public: using StateId = S; LifoQueue() : QueueBase<StateId>(LIFO_QUEUE) {} virtual ~LifoQueue() = default; StateId Head() const final { return queue_.front(); } void Enqueue(StateId s) final { queue_.push_front(s); } void Dequeue() final { queue_.pop_front(); } void Update(StateId) final {} bool Empty() const final { return queue_.empty(); } void Clear() final { queue_.clear(); } private: std::deque<StateId> queue_; }; // Shortest-first queue discipline, templated on the StateId and as well as a // comparison functor used to compare two StateIds. If a (single) state's order // changes, it can be reordered in the queue with a call to Update(). If update // is false, call to Update() does not reorder the queue. // // This is not a final class. template <typename S, typename Compare, bool update = true> class ShortestFirstQueue : public QueueBase<S> { public: using StateId = S; explicit ShortestFirstQueue(Compare comp) : QueueBase<StateId>(SHORTEST_FIRST_QUEUE), heap_(comp) {} virtual ~ShortestFirstQueue() = default; StateId Head() const override { return heap_.Top(); } void Enqueue(StateId s) override { if (update) { for (StateId i = key_.size(); i <= s; ++i) key_.push_back(kNoStateId); key_[s] = heap_.Insert(s); } else { heap_.Insert(s); } } void Dequeue() override { if (update) { key_[heap_.Pop()] = kNoStateId; } else { heap_.Pop(); } } void Update(StateId s) override { if (!update) return; if (s >= key_.size() || key_[s] == kNoStateId) { Enqueue(s); } else { heap_.Update(key_[s], s); } } bool Empty() const override { return heap_.Empty(); } void Clear() override { heap_.Clear(); if (update) key_.clear(); } const Compare &GetCompare() const { return heap_.GetCompare(); } private: Heap<StateId, Compare> heap_; std::vector<ssize_t> key_; }; namespace internal { // Given a vector that maps from states to weights, and a comparison functor // for weights, this class defines a comparison function object between states. template <typename StateId, typename Less> class StateWeightCompare { public: using Weight = typename Less::Weight; StateWeightCompare(const std::vector<Weight> &weights, const Less &less) : weights_(weights), less_(less) {} bool operator()(const StateId s1, const StateId s2) const { return less_(weights_[s1], weights_[s2]); } private: // Borrowed references. const std::vector<Weight> &weights_; const Less &less_; }; } // namespace internal // Shortest-first queue discipline, templated on the StateId and Weight, is // specialized to use the weight's natural order for the comparison function. template <typename S, typename Weight> class NaturalShortestFirstQueue final : public ShortestFirstQueue< S, internal::StateWeightCompare<S, NaturalLess<Weight>>> { public: using StateId = S; using Compare = internal::StateWeightCompare<StateId, NaturalLess<Weight>>; explicit NaturalShortestFirstQueue(const std::vector<Weight> &distance) : ShortestFirstQueue<StateId, Compare>(Compare(distance, less_)) {} virtual ~NaturalShortestFirstQueue() = default; private: // This is non-static because the constructor for non-idempotent weights will // result in a an error. const NaturalLess<Weight> less_{}; }; // Topological-order queue discipline, templated on the StateId. States are // ordered in the queue topologically. The FST must be acyclic. template <class S> class TopOrderQueue : public QueueBase<S> { public: using StateId = S; // This constructor computes the topological order. It accepts an arc filter // to limit the transitions considered in that computation (e.g., only the // epsilon graph). template <class Arc, class ArcFilter> TopOrderQueue(const Fst<Arc> &fst, ArcFilter filter) : QueueBase<StateId>(TOP_ORDER_QUEUE), front_(0), back_(kNoStateId), order_(0), state_(0) { bool acyclic; TopOrderVisitor<Arc> top_order_visitor(&order_, &acyclic); DfsVisit(fst, &top_order_visitor, filter); if (!acyclic) { FSTERROR() << "TopOrderQueue: FST is not acyclic"; QueueBase<S>::SetError(true); } state_.resize(order_.size(), kNoStateId); } // This constructor is passed the pre-computed topological order. explicit TopOrderQueue(const std::vector<StateId> &order) : QueueBase<StateId>(TOP_ORDER_QUEUE), front_(0), back_(kNoStateId), order_(order), state_(order.size(), kNoStateId) {} virtual ~TopOrderQueue() = default; StateId Head() const final { return state_[front_]; } void Enqueue(StateId s) final { if (front_ > back_) { front_ = back_ = order_[s]; } else if (order_[s] > back_) { back_ = order_[s]; } else if (order_[s] < front_) { front_ = order_[s]; } state_[order_[s]] = s; } void Dequeue() final { state_[front_] = kNoStateId; while ((front_ <= back_) && (state_[front_] == kNoStateId)) ++front_; } void Update(StateId) final {} bool Empty() const final { return front_ > back_; } void Clear() final { for (StateId s = front_; s <= back_; ++s) state_[s] = kNoStateId; back_ = kNoStateId; front_ = 0; } private: StateId front_; StateId back_; std::vector<StateId> order_; std::vector<StateId> state_; }; // State order queue discipline, templated on the StateId. States are ordered in // the queue by state ID. template <class S> class StateOrderQueue : public QueueBase<S> { public: using StateId = S; StateOrderQueue() : QueueBase<StateId>(STATE_ORDER_QUEUE), front_(0), back_(kNoStateId) {} virtual ~StateOrderQueue() = default; StateId Head() const final { return front_; } void Enqueue(StateId s) final { if (front_ > back_) { front_ = back_ = s; } else if (s > back_) { back_ = s; } else if (s < front_) { front_ = s; } while (enqueued_.size() <= s) enqueued_.push_back(false); enqueued_[s] = true; } void Dequeue() final { enqueued_[front_] = false; while ((front_ <= back_) && (enqueued_[front_] == false)) ++front_; } void Update(StateId) final {} bool Empty() const final { return front_ > back_; } void Clear() final { for (StateId i = front_; i <= back_; ++i) enqueued_[i] = false; front_ = 0; back_ = kNoStateId; } private: StateId front_; StateId back_; std::vector<bool> enqueued_; }; // SCC topological-order meta-queue discipline, templated on the StateId and a // queue used inside each SCC. It visits the SCCs of an FST in topological // order. Its constructor is passed the queues to to use within an SCC. template <class S, class Queue> class SccQueue : public QueueBase<S> { public: using StateId = S; // Constructor takes a vector specifying the SCC number per state and a // vector giving the queue to use per SCC number. SccQueue(const std::vector<StateId> &scc, std::vector<std::unique_ptr<Queue>> *queue) : QueueBase<StateId>(SCC_QUEUE), queue_(queue), scc_(scc), front_(0), back_(kNoStateId) {} virtual ~SccQueue() = default; StateId Head() const final { while ((front_ <= back_) && (((*queue_)[front_] && (*queue_)[front_]->Empty()) || (((*queue_)[front_] == nullptr) && ((front_ >= trivial_queue_.size()) || (trivial_queue_[front_] == kNoStateId))))) { ++front_; } if ((*queue_)[front_]) { return (*queue_)[front_]->Head(); } else { return trivial_queue_[front_]; } } void Enqueue(StateId s) final { if (front_ > back_) { front_ = back_ = scc_[s]; } else if (scc_[s] > back_) { back_ = scc_[s]; } else if (scc_[s] < front_) { front_ = scc_[s]; } if ((*queue_)[scc_[s]]) { (*queue_)[scc_[s]]->Enqueue(s); } else { while (trivial_queue_.size() <= scc_[s]) { trivial_queue_.push_back(kNoStateId); } trivial_queue_[scc_[s]] = s; } } void Dequeue() final { if ((*queue_)[front_]) { (*queue_)[front_]->Dequeue(); } else if (front_ < trivial_queue_.size()) { trivial_queue_[front_] = kNoStateId; } } void Update(StateId s) final { if ((*queue_)[scc_[s]]) (*queue_)[scc_[s]]->Update(s); } bool Empty() const final { // Queues SCC number back_ is not empty unless back_ == front_. if (front_ < back_) { return false; } else if (front_ > back_) { return true; } else if ((*queue_)[front_]) { return (*queue_)[front_]->Empty(); } else { return (front_ >= trivial_queue_.size()) || (trivial_queue_[front_] == kNoStateId); } } void Clear() final { for (StateId i = front_; i <= back_; ++i) { if ((*queue_)[i]) { (*queue_)[i]->Clear(); } else if (i < trivial_queue_.size()) { trivial_queue_[i] = kNoStateId; } } front_ = 0; back_ = kNoStateId; } private: std::vector<std::unique_ptr<Queue>> *queue_; const std::vector<StateId> &scc_; mutable StateId front_; StateId back_; std::vector<StateId> trivial_queue_; }; // Automatic queue discipline. It selects a queue discipline for a given FST // based on its properties. template <class S> class AutoQueue : public QueueBase<S> { public: using StateId = S; // This constructor takes a state distance vector that, if non-null and if // the Weight type has the path property, will entertain the shortest-first // queue using the natural order w.r.t to the distance. template <class Arc, class ArcFilter> AutoQueue(const Fst<Arc> &fst, const std::vector<typename Arc::Weight> *distance, ArcFilter filter) : QueueBase<StateId>(AUTO_QUEUE) { using Weight = typename Arc::Weight; using Less = NaturalLess<Weight>; using Compare = internal::StateWeightCompare<StateId, Less>; // First checks if the FST is known to have these properties. const auto props = fst.Properties(kAcyclic | kCyclic | kTopSorted | kUnweighted, false); if ((props & kTopSorted) || fst.Start() == kNoStateId) { queue_.reset(new StateOrderQueue<StateId>()); VLOG(2) << "AutoQueue: using state-order discipline"; } else if (props & kAcyclic) { queue_.reset(new TopOrderQueue<StateId>(fst, filter)); VLOG(2) << "AutoQueue: using top-order discipline"; } else if ((props & kUnweighted) && (Weight::Properties() & kIdempotent)) { queue_.reset(new LifoQueue<StateId>()); VLOG(2) << "AutoQueue: using LIFO discipline"; } else { uint64 properties; // Decomposes into strongly-connected components. SccVisitor<Arc> scc_visitor(&scc_, nullptr, nullptr, &properties); DfsVisit(fst, &scc_visitor, filter); auto nscc = *std::max_element(scc_.begin(), scc_.end()) + 1; std::vector<QueueType> queue_types(nscc); std::unique_ptr<Less> less; std::unique_ptr<Compare> comp; if (distance && (Weight::Properties() & kPath) == kPath) { less.reset(new Less); comp.reset(new Compare(*distance, *less)); } // Finds the queue type to use per SCC. bool unweighted; bool all_trivial; SccQueueType(fst, scc_, &queue_types, filter, less.get(), &all_trivial, &unweighted); // If unweighted and semiring is idempotent, uses LIFO queue. if (unweighted) { queue_.reset(new LifoQueue<StateId>()); VLOG(2) << "AutoQueue: using LIFO discipline"; return; } // If all the SCC are trivial, the FST is acyclic and the scc number gives // the topological order. if (all_trivial) { queue_.reset(new TopOrderQueue<StateId>(scc_)); VLOG(2) << "AutoQueue: using top-order discipline"; return; } VLOG(2) << "AutoQueue: using SCC meta-discipline"; queues_.resize(nscc); for (StateId i = 0; i < nscc; ++i) { switch (queue_types[i]) { case TRIVIAL_QUEUE: queues_[i].reset(); VLOG(3) << "AutoQueue: SCC #" << i << ": using trivial discipline"; break; case SHORTEST_FIRST_QUEUE: queues_[i].reset( new ShortestFirstQueue<StateId, Compare, false>(*comp)); VLOG(3) << "AutoQueue: SCC #" << i << ": using shortest-first discipline"; break; case LIFO_QUEUE: queues_[i].reset(new LifoQueue<StateId>()); VLOG(3) << "AutoQueue: SCC #" << i << ": using LIFO discipline"; break; case FIFO_QUEUE: default: queues_[i].reset(new FifoQueue<StateId>()); VLOG(3) << "AutoQueue: SCC #" << i << ": using FIFO discipine"; break; } } queue_.reset(new SccQueue<StateId, QueueBase<StateId>>(scc_, &queues_)); } } virtual ~AutoQueue() = default; StateId Head() const final { return queue_->Head(); } void Enqueue(StateId s) final { queue_->Enqueue(s); } void Dequeue() final { queue_->Dequeue(); } void Update(StateId s) final { queue_->Update(s); } bool Empty() const final { return queue_->Empty(); } void Clear() final { queue_->Clear(); } private: template <class Arc, class ArcFilter, class Less> static void SccQueueType(const Fst<Arc> &fst, const std::vector<StateId> &scc, std::vector<QueueType> *queue_types, ArcFilter filter, Less *less, bool *all_trivial, bool *unweighted); std::unique_ptr<QueueBase<StateId>> queue_; std::vector<std::unique_ptr<QueueBase<StateId>>> queues_; std::vector<StateId> scc_; }; // Examines the states in an FST's strongly connected components and determines // which type of queue to use per SCC. Stores result as a vector of QueueTypes // which is assumed to have length equal to the number of SCCs. An arc filter // is used to limit the transitions considered (e.g., only the epsilon graph). // The argument all_trivial is set to true if every queue is the trivial queue. // The argument unweighted is set to true if the semiring is idempotent and all // the arc weights are equal to Zero() or One(). template <class StateId> template <class Arc, class ArcFilter, class Less> void AutoQueue<StateId>::SccQueueType(const Fst<Arc> &fst, const std::vector<StateId> &scc, std::vector<QueueType> *queue_type, ArcFilter filter, Less *less, bool *all_trivial, bool *unweighted) { using StateId = typename Arc::StateId; using Weight = typename Arc::Weight; *all_trivial = true; *unweighted = true; for (StateId i = 0; i < queue_type->size(); ++i) { (*queue_type)[i] = TRIVIAL_QUEUE; } for (StateIterator<Fst<Arc>> sit(fst); !sit.Done(); sit.Next()) { const auto state = sit.Value(); for (ArcIterator<Fst<Arc>> ait(fst, state); !ait.Done(); ait.Next()) { const auto &arc = ait.Value(); if (!filter(arc)) continue; if (scc[state] == scc[arc.nextstate]) { auto &type = (*queue_type)[scc[state]]; if (!less || ((*less)(arc.weight, Weight::One()))) { type = FIFO_QUEUE; } else if ((type == TRIVIAL_QUEUE) || (type == LIFO_QUEUE)) { if (!(Weight::Properties() & kIdempotent) || (arc.weight != Weight::Zero() && arc.weight != Weight::One())) { type = SHORTEST_FIRST_QUEUE; } else { type = LIFO_QUEUE; } } if (type != TRIVIAL_QUEUE) *all_trivial = false; } if (!(Weight::Properties() & kIdempotent) || (arc.weight != Weight::Zero() && arc.weight != Weight::One())) { *unweighted = false; } } } } // An A* estimate is a function object that maps from a state ID to a an // estimate of the shortest distance to the final states. // A trivial A* estimate, yielding a queue which behaves the same in Dijkstra's // algorithm. template <typename StateId, typename Weight> struct TrivialAStarEstimate { const Weight &operator()(StateId) const { return Weight::One(); } }; // A non-trivial A* estimate using a vector of the estimated future costs. template <typename StateId, typename Weight> class NaturalAStarEstimate { public: NaturalAStarEstimate(const std::vector<Weight> &beta) : beta_(beta) {} const Weight &operator()(StateId s) const { return beta_[s]; } private: const std::vector<Weight> &beta_; }; // Given a vector that maps from states to weights representing the shortest // distance from the initial state, a comparison function object between // weights, and an estimate of the shortest distance to the final states, this // class defines a comparison function object between states. template <typename S, typename Less, typename Estimate> class AStarWeightCompare { public: using StateId = S; using Weight = typename Less::Weight; AStarWeightCompare(const std::vector<Weight> &weights, const Less &less, const Estimate &estimate) : weights_(weights), less_(less), estimate_(estimate) {} bool operator()(StateId s1, StateId s2) const { const auto w1 = Times(weights_[s1], estimate_(s1)); const auto w2 = Times(weights_[s2], estimate_(s2)); return less_(w1, w2); } const Estimate &GetEstimate() const { return estimate_; } private: const std::vector<Weight> &weights_; const Less &less_; const Estimate &estimate_; }; // A* queue discipline templated on StateId, Weight, and Estimate. template <typename S, typename Weight, typename Estimate> class NaturalAStarQueue : public ShortestFirstQueue< S, AStarWeightCompare<S, NaturalLess<Weight>, Estimate>> { public: using StateId = S; using Compare = AStarWeightCompare<StateId, NaturalLess<Weight>, Estimate>; NaturalAStarQueue(const std::vector<Weight> &distance, const Estimate &estimate) : ShortestFirstQueue<StateId, Compare>( Compare(distance, less_, estimate)) {} ~NaturalAStarQueue() = default; private: // This is non-static because the constructor for non-idempotent weights will // result in a an error. const NaturalLess<Weight> less_{}; }; // A state equivalence class is a function object that maps from a state ID to // an equivalence class (state) ID. The trivial equivalence class maps a state // ID to itself. template <typename StateId> struct TrivialStateEquivClass { StateId operator()(StateId s) const { return s; } }; // Distance-based pruning queue discipline: Enqueues a state only when its // shortest distance (so far), as specified by distance, is less than (as // specified by comp) the shortest distance Times() the threshold to any state // in the same equivalence class, as specified by the functor class_func. The // underlying queue discipline is specified by queue. The ownership of queue is // given to this class. // // This is not a final class. template <typename Queue, typename Less, typename ClassFnc> class PruneQueue : public QueueBase<typename Queue::StateId> { public: using StateId = typename Queue::StateId; using Weight = typename Less::Weight; PruneQueue(const std::vector<Weight> &distance, Queue *queue, const Less &less, const ClassFnc &class_fnc, Weight threshold) : QueueBase<StateId>(OTHER_QUEUE), distance_(distance), queue_(queue), less_(less), class_fnc_(class_fnc), threshold_(std::move(threshold)) {} virtual ~PruneQueue() = default; StateId Head() const override { return queue_->Head(); } void Enqueue(StateId s) override { const auto c = class_fnc_(s); if (c >= class_distance_.size()) { class_distance_.resize(c + 1, Weight::Zero()); } if (less_(distance_[s], class_distance_[c])) { class_distance_[c] = distance_[s]; } // Enqueues only if below threshold limit. const auto limit = Times(class_distance_[c], threshold_); if (less_(distance_[s], limit)) queue_->Enqueue(s); } void Dequeue() override { queue_->Dequeue(); } void Update(StateId s) override { const auto c = class_fnc_(s); if (less_(distance_[s], class_distance_[c])) { class_distance_[c] = distance_[s]; } queue_->Update(s); } bool Empty() const override { return queue_->Empty(); } void Clear() override { queue_->Clear(); } private: const std::vector<Weight> &distance_; // Shortest distance to state. std::unique_ptr<Queue> queue_; const Less &less_; // Borrowed reference. const ClassFnc &class_fnc_; // Equivalence class functor. Weight threshold_; // Pruning weight threshold. std::vector<Weight> class_distance_; // Shortest distance to class. }; // Pruning queue discipline (see above) using the weight's natural order for the // comparison function. The ownership of the queue argument is given to this // class. template <typename Queue, typename Weight, typename ClassFnc> class NaturalPruneQueue final : public PruneQueue<Queue, NaturalLess<Weight>, ClassFnc> { public: using StateId = typename Queue::StateId; NaturalPruneQueue(const std::vector<Weight> &distance, Queue *queue, const ClassFnc &class_fnc, Weight threshold) : PruneQueue<Queue, NaturalLess<Weight>, ClassFnc>( distance, queue, NaturalLess<Weight>(), class_fnc, threshold) {} virtual ~NaturalPruneQueue() = default; }; // Filter-based pruning queue discipline: enqueues a state only if allowed by // the filter, specified by the state filter functor argument. The underlying // queue discipline is specified by the queue argument. The ownership of the // queue is given to this class. template <typename Queue, typename Filter> class FilterQueue : public QueueBase<typename Queue::StateId> { public: using StateId = typename Queue::StateId; FilterQueue(Queue *queue, const Filter &filter) : QueueBase<StateId>(OTHER_QUEUE), queue_(queue), filter_(filter) {} virtual ~FilterQueue() = default; StateId Head() const final { return queue_->Head(); } // Enqueues only if allowed by state filter. void Enqueue(StateId s) final { if (filter_(s)) queue_->Enqueue(s); } void Dequeue() final { queue_->Dequeue(); } void Update(StateId s) final {} bool Empty() const final { return queue_->Empty(); } void Clear() final { queue_->Clear(); } private: std::unique_ptr<Queue> queue_; const Filter &filter_; }; } // namespace fst #endif // FST_QUEUE_H_ |