Blame view
tools/openfst-1.6.7/include/fst/sparse-power-weight.h
6.55 KB
8dcb6dfcb first commit |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 |
// See www.openfst.org for extensive documentation on this weighted // finite-state transducer library. // // Cartesian power weight semiring operation definitions, using // SparseTupleWeight as underlying representation. #ifndef FST_SPARSE_POWER_WEIGHT_H_ #define FST_SPARSE_POWER_WEIGHT_H_ #include <climits> #include <string> #include <fst/sparse-tuple-weight.h> #include <fst/weight.h> namespace fst { // Sparse cartesian power semiring: W ^ n // // Forms: // // - a left semimodule when W is a left semiring, // - a right semimodule when W is a right semiring, // - a bisemimodule when W is a semiring, // the free semimodule of rank n over W // // The Times operation is overloaded to provide the left and right scalar // products. // // K is the key value type. kNoKey (-1) is reserved for internal use template <class W, class K = int> class SparsePowerWeight : public SparseTupleWeight<W, K> { public: using ReverseWeight = SparsePowerWeight<typename W::ReverseWeight, K>; SparsePowerWeight() {} explicit SparsePowerWeight(const SparseTupleWeight<W, K> &weight) : SparseTupleWeight<W, K>(weight) {} template <class Iterator> SparsePowerWeight(Iterator begin, Iterator end) : SparseTupleWeight<W, K>(begin, end) {} // Initialize component `key` to `weight`, with `default_weight` for all // other components. SparsePowerWeight(const K &key, const W &weight, const W &default_weight = W::Zero()) : SparseTupleWeight<W, K>(key, weight, default_weight) {} static const SparsePowerWeight &Zero() { static const SparsePowerWeight zero(SparseTupleWeight<W, K>::Zero()); return zero; } static const SparsePowerWeight &One() { static const SparsePowerWeight one(SparseTupleWeight<W, K>::One()); return one; } static const SparsePowerWeight &NoWeight() { static const SparsePowerWeight no_weight( SparseTupleWeight<W, K>::NoWeight()); return no_weight; } // Overide this: Overwrite the Type method to reflect the key type if using // a non-default key type. static const string &Type() { static const string *const type = [] { string type = W::Type() + "_^n"; if (sizeof(K) != sizeof(uint32)) { type += "_" + std::to_string(CHAR_BIT * sizeof(K)); } return new string(type); }(); return *type; } static constexpr uint64 Properties() { return W::Properties() & (kLeftSemiring | kRightSemiring | kCommutative | kIdempotent); } SparsePowerWeight Quantize(float delta = kDelta) const { return SparsePowerWeight(SparseTupleWeight<W, K>::Quantize(delta)); } ReverseWeight Reverse() const { return ReverseWeight(SparseTupleWeight<W, K>::Reverse()); } }; template <class W, class K, class M> inline SparsePowerWeight<W, K> SparsePowerWeightMap( const SparsePowerWeight<W, K> &w1, const SparsePowerWeight<W, K> &w2, const M &operator_mapper) { SparsePowerWeight<W, K> result; SparseTupleWeightMap(&result, w1, w2, operator_mapper); return result; } // Semimodule plus operation. template <class W, class K> inline SparsePowerWeight<W, K> Plus(const SparsePowerWeight<W, K> &w1, const SparsePowerWeight<W, K> &w2) { return SparsePowerWeightMap(w1, w2, [](const K &k, const W &v1, const W &v2) { return Plus(v1, v2); }); } // Semimodule times operation. template <class W, class K> inline SparsePowerWeight<W, K> Times(const SparsePowerWeight<W, K> &w1, const SparsePowerWeight<W, K> &w2) { return SparsePowerWeightMap(w1, w2, [](const K &k, const W &v1, const W &v2) { return Times(v1, v2); }); } // Semimodule divide operation. template <class W, class K> inline SparsePowerWeight<W, K> Divide(const SparsePowerWeight<W, K> &w1, const SparsePowerWeight<W, K> &w2, DivideType type = DIVIDE_ANY) { return SparsePowerWeightMap(w1, w2, [type](const K &k, const W &v1, const W &v2) { return Divide(v1, v2, type); }); } // Semimodule dot product operation. template <class W, class K> inline const W &DotProduct(const SparsePowerWeight<W, K> &w1, const SparsePowerWeight<W, K> &w2) { const SparsePowerWeight<W, K> product = Times(w1, w2); W result(W::Zero()); for (SparseTupleWeightIterator<W, K> it(product); !it.Done(); it.Next()) { result = Plus(result, it.Value().second); } return result; } template <class W, class K> inline bool ApproxEqual(const SparsePowerWeight<W, K> &w1, const SparsePowerWeight<W, K> &w2, float delta = kDelta) { auto result = SparsePowerWeightMap( w1, w2, [delta](const K &k, const W &v1, const W &v2) { return ApproxEqual(v1, v2, delta) ? W::One() : W::Zero(); }); return result == SparsePowerWeight<W, K>::One(); } template <class W, class K> inline SparsePowerWeight<W, K> Times(const W &k, const SparsePowerWeight<W, K> &w2) { const SparseTupleWeight<W, K> t2(k); const SparsePowerWeight<W, K> w1(t2); return Times(w1, w2); } template <class W, class K> inline SparsePowerWeight<W, K> Times(const SparsePowerWeight<W, K> &w1, const W &k) { const SparseTupleWeight<W, K> t2(k); const SparsePowerWeight<W, K> w2(t2); return Times(w1, w2); } template <class W, class K> inline SparsePowerWeight<W, K> Divide(const SparsePowerWeight<W, K> &w1, const W &k, DivideType divide_type = DIVIDE_ANY) { const SparseTupleWeight<W, K> t2(k); const SparsePowerWeight<W, K> w2(t2); return Divide(w1, w2, divide_type); } // This function object generates weights over the Cartesian power of rank // n over the underlying weight. This is intended primarily for testing. template <class W, class K> class WeightGenerate<SparsePowerWeight<W, K>> { public: using Weight = SparsePowerWeight<W, K>; using Generate = WeightGenerate<W>; explicit WeightGenerate(bool allow_zero = true, size_t sparse_power_rank = 3) : generate_(allow_zero), sparse_power_rank_(sparse_power_rank) {} Weight operator()() const { Weight weight; for (size_t i = 1; i <= sparse_power_rank_; ++i) { weight.PushBack(i, generate_(), true); } return weight; } private: const Generate generate_; const size_t sparse_power_rank_; }; } // namespace fst #endif // FST_SPARSE_POWER_WEIGHT_H_ |