Blame view
tools/openfst-1.6.7/include/fst/test-properties.h
9.22 KB
8dcb6dfcb first commit |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 |
// See www.openfst.org for extensive documentation on this weighted // finite-state transducer library. // // Functions to manipulate and test property bits. #ifndef FST_TEST_PROPERTIES_H_ #define FST_TEST_PROPERTIES_H_ #include <unordered_set> #include <fst/flags.h> #include <fst/log.h> #include <fst/connect.h> #include <fst/dfs-visit.h> DECLARE_bool(fst_verify_properties); namespace fst { // namespace internal { // For a binary property, the bit is always returned set. For a trinary (i.e., // two-bit) property, both bits are returned set iff either corresponding input // bit is set. inline uint64 KnownProperties(uint64 props) { return kBinaryProperties | (props & kTrinaryProperties) | ((props & kPosTrinaryProperties) << 1) | ((props & kNegTrinaryProperties) >> 1); } // Tests compatibility between two sets of properties. inline bool CompatProperties(uint64 props1, uint64 props2) { const auto known_props1 = KnownProperties(props1); const auto known_props2 = KnownProperties(props2); const auto known_props = known_props1 & known_props2; const auto incompat_props = (props1 & known_props) ^ (props2 & known_props); if (incompat_props) { uint64 prop = 1; for (int i = 0; i < 64; ++i, prop <<= 1) { if (prop & incompat_props) { LOG(ERROR) << "CompatProperties: Mismatch: " << PropertyNames[i] << ": props1 = " << (props1 & prop ? "true" : "false") << ", props2 = " << (props2 & prop ? "true" : "false"); } } return false; } else { return true; } } // Computes FST property values defined in properties.h. The value of each // property indicated in the mask will be determined and returned (these will // never be unknown here). In the course of determining the properties // specifically requested in the mask, certain other properties may be // determined (those with little additional expense) and their values will be // returned as well. The complete set of known properties (whether true or // false) determined by this operation will be assigned to the the value pointed // to by KNOWN. If 'use_stored' is true, pre-computed FST properties may be used // when possible. 'mask & required_mask' is used to determine whether the stored // propertoes can be used. This routine is seldom called directly; instead it is // used to implement fst.Properties(mask, true). template <class Arc> uint64 ComputeProperties(const Fst<Arc> &fst, uint64 mask, uint64 *known, bool use_stored) { using Label = typename Arc::Label; using StateId = typename Arc::StateId; using Weight = typename Arc::Weight; const auto fst_props = fst.Properties(kFstProperties, false); // FST-stored. // Check stored FST properties first if allowed. if (use_stored) { const auto known_props = KnownProperties(fst_props); // If FST contains required info, return it. if ((known_props & mask) == mask) { if (known) *known = known_props; return fst_props; } } // Computes (trinary) properties explicitly. // Initialize with binary properties (already known). uint64 comp_props = fst_props & kBinaryProperties; // Computes these trinary properties with a DFS. We compute only those that // need a DFS here, since we otherwise would like to avoid a DFS since its // stack could grow large. uint64 dfs_props = kCyclic | kAcyclic | kInitialCyclic | kInitialAcyclic | kAccessible | kNotAccessible | kCoAccessible | kNotCoAccessible; std::vector<StateId> scc; if (mask & (dfs_props | kWeightedCycles | kUnweightedCycles)) { SccVisitor<Arc> scc_visitor(&scc, nullptr, nullptr, &comp_props); DfsVisit(fst, &scc_visitor); } // Computes any remaining trinary properties via a state and arcs iterations if (mask & ~(kBinaryProperties | dfs_props)) { comp_props |= kAcceptor | kNoEpsilons | kNoIEpsilons | kNoOEpsilons | kILabelSorted | kOLabelSorted | kUnweighted | kTopSorted | kString; if (mask & (kIDeterministic | kNonIDeterministic)) { comp_props |= kIDeterministic; } if (mask & (kODeterministic | kNonODeterministic)) { comp_props |= kODeterministic; } if (mask & (dfs_props | kWeightedCycles | kUnweightedCycles)) { comp_props |= kUnweightedCycles; } std::unique_ptr<std::unordered_set<Label>> ilabels; std::unique_ptr<std::unordered_set<Label>> olabels; StateId nfinal = 0; for (StateIterator<Fst<Arc>> siter(fst); !siter.Done(); siter.Next()) { StateId s = siter.Value(); Arc prev_arc; // Creates these only if we need to. if (mask & (kIDeterministic | kNonIDeterministic)) { ilabels.reset(new std::unordered_set<Label>()); } if (mask & (kODeterministic | kNonODeterministic)) { olabels.reset(new std::unordered_set<Label>()); } bool first_arc = true; for (ArcIterator<Fst<Arc>> aiter(fst, s); !aiter.Done(); aiter.Next()) { const auto &arc = aiter.Value(); if (ilabels && ilabels->find(arc.ilabel) != ilabels->end()) { comp_props |= kNonIDeterministic; comp_props &= ~kIDeterministic; } if (olabels && olabels->find(arc.olabel) != olabels->end()) { comp_props |= kNonODeterministic; comp_props &= ~kODeterministic; } if (arc.ilabel != arc.olabel) { comp_props |= kNotAcceptor; comp_props &= ~kAcceptor; } if (arc.ilabel == 0 && arc.olabel == 0) { comp_props |= kEpsilons; comp_props &= ~kNoEpsilons; } if (arc.ilabel == 0) { comp_props |= kIEpsilons; comp_props &= ~kNoIEpsilons; } if (arc.olabel == 0) { comp_props |= kOEpsilons; comp_props &= ~kNoOEpsilons; } if (!first_arc) { if (arc.ilabel < prev_arc.ilabel) { comp_props |= kNotILabelSorted; comp_props &= ~kILabelSorted; } if (arc.olabel < prev_arc.olabel) { comp_props |= kNotOLabelSorted; comp_props &= ~kOLabelSorted; } } if (arc.weight != Weight::One() && arc.weight != Weight::Zero()) { comp_props |= kWeighted; comp_props &= ~kUnweighted; if ((comp_props & kUnweightedCycles) && scc[s] == scc[arc.nextstate]) { comp_props |= kWeightedCycles; comp_props &= ~kUnweightedCycles; } } if (arc.nextstate <= s) { comp_props |= kNotTopSorted; comp_props &= ~kTopSorted; } if (arc.nextstate != s + 1) { comp_props |= kNotString; comp_props &= ~kString; } prev_arc = arc; first_arc = false; if (ilabels) ilabels->insert(arc.ilabel); if (olabels) olabels->insert(arc.olabel); } if (nfinal > 0) { // Final state not last. comp_props |= kNotString; comp_props &= ~kString; } const auto final_weight = fst.Final(s); if (final_weight != Weight::Zero()) { // Final state. if (final_weight != Weight::One()) { comp_props |= kWeighted; comp_props &= ~kUnweighted; } ++nfinal; } else { // Non-final state. if (fst.NumArcs(s) != 1) { comp_props |= kNotString; comp_props &= ~kString; } } } if (fst.Start() != kNoStateId && fst.Start() != 0) { comp_props |= kNotString; comp_props &= ~kString; } } if (known) *known = KnownProperties(comp_props); return comp_props; } // This is a wrapper around ComputeProperties that will cause a fatal error if // the stored properties and the computed properties are incompatible when // FLAGS_fst_verify_properties is true. This routine is seldom called directly; // instead it is used to implement fst.Properties(mask, true). template <class Arc> uint64 TestProperties(const Fst<Arc> &fst, uint64 mask, uint64 *known) { if (FLAGS_fst_verify_properties) { const auto stored_props = fst.Properties(kFstProperties, false); const auto computed_props = ComputeProperties(fst, mask, known, false); if (!CompatProperties(stored_props, computed_props)) { FSTERROR() << "TestProperties: stored FST properties incorrect" << " (stored: props1, computed: props2)"; } return computed_props; } else { return ComputeProperties(fst, mask, known, true); } } // If all the properties of 'fst' corresponding to 'check_mask' are known, // returns the stored properties. Otherwise, the properties corresponding to // both 'check_mask' and 'test_mask' are computed. This is used to check for // newly-added properties that might not be set in old binary files. template <class Arc> uint64 CheckProperties(const Fst<Arc> &fst, uint64 check_mask, uint64 test_mask) { auto props = fst.Properties(kFstProperties, false); if (FLAGS_fst_verify_properties) { props = TestProperties(fst, check_mask | test_mask, nullptr); } else if ((KnownProperties(props) & check_mask) != check_mask) { props = ComputeProperties(fst, check_mask | test_mask, nullptr, false); } return props & (check_mask | test_mask); } //} // namespace internal } // namespace fst #endif // FST_TEST_PROPERTIES_H_ |