Blame view
tools/openfst-1.6.7/include/fst/util.h
12.1 KB
8dcb6dfcb first commit |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 |
// See www.openfst.org for extensive documentation on this weighted // finite-state transducer library. // // FST utility inline definitions. #ifndef FST_UTIL_H_ #define FST_UTIL_H_ #include <iostream> #include <iterator> #include <list> #include <map> #include <set> #include <sstream> #include <string> #include <type_traits> #include <unordered_map> #include <unordered_set> #include <utility> #include <vector> #include <fst/compat.h> #include <fst/types.h> #include <fst/log.h> #include <fstream> #include <fst/flags.h> // Utility for error handling. DECLARE_bool(fst_error_fatal); #define FSTERROR() \ (FLAGS_fst_error_fatal ? LOG(FATAL) : LOG(ERROR)) namespace fst { // Utility for type I/O. // Reads types from an input stream. // Generic case. template <class T, typename std::enable_if<std::is_class<T>::value, T>::type* = nullptr> inline std::istream &ReadType(std::istream &strm, T *t) { return t->Read(strm); } // Numeric (boolean, integral, floating-point) case. template <class T, typename std::enable_if<std::is_arithmetic<T>::value, T>::type* = nullptr> inline std::istream &ReadType(std::istream &strm, T *t) { return strm.read(reinterpret_cast<char *>(t), sizeof(T)); \ } // String case. inline std::istream &ReadType(std::istream &strm, string *s) { // NOLINT s->clear(); int32 ns = 0; strm.read(reinterpret_cast<char *>(&ns), sizeof(ns)); for (int32 i = 0; i < ns; ++i) { char c; strm.read(&c, 1); *s += c; } return strm; } // Declares types that can be read from an input stream. template <class... T> std::istream &ReadType(std::istream &strm, std::vector<T...> *c); template <class... T> std::istream &ReadType(std::istream &strm, std::list<T...> *c); template <class... T> std::istream &ReadType(std::istream &strm, std::set<T...> *c); template <class... T> std::istream &ReadType(std::istream &strm, std::map<T...> *c); template <class... T> std::istream &ReadType(std::istream &strm, std::unordered_map<T...> *c); template <class... T> std::istream &ReadType(std::istream &strm, std::unordered_set<T...> *c); // Pair case. template <typename S, typename T> inline std::istream &ReadType(std::istream &strm, std::pair<S, T> *p) { ReadType(strm, &p->first); ReadType(strm, &p->second); return strm; } template <typename S, typename T> inline std::istream &ReadType(std::istream &strm, std::pair<const S, T> *p) { ReadType(strm, const_cast<S *>(&p->first)); ReadType(strm, &p->second); return strm; } namespace internal { template <class C, class ReserveFn> std::istream &ReadContainerType(std::istream &strm, C *c, ReserveFn reserve) { c->clear(); int64 n = 0; ReadType(strm, &n); reserve(c, n); auto insert = std::inserter(*c, c->begin()); for (int64 i = 0; i < n; ++i) { typename C::value_type value; ReadType(strm, &value); *insert = value; } return strm; } } // namespace internal template <class... T> std::istream &ReadType(std::istream &strm, std::vector<T...> *c) { return internal::ReadContainerType( strm, c, [](decltype(c) v, int n) { v->reserve(n); }); } template <class... T> std::istream &ReadType(std::istream &strm, std::list<T...> *c) { return internal::ReadContainerType(strm, c, [](decltype(c) v, int n) {}); } template <class... T> std::istream &ReadType(std::istream &strm, std::set<T...> *c) { return internal::ReadContainerType(strm, c, [](decltype(c) v, int n) {}); } template <class... T> std::istream &ReadType(std::istream &strm, std::map<T...> *c) { return internal::ReadContainerType(strm, c, [](decltype(c) v, int n) {}); } template <class... T> std::istream &ReadType(std::istream &strm, std::unordered_set<T...> *c) { return internal::ReadContainerType( strm, c, [](decltype(c) v, int n) { v->reserve(n); }); } template <class... T> std::istream &ReadType(std::istream &strm, std::unordered_map<T...> *c) { return internal::ReadContainerType( strm, c, [](decltype(c) v, int n) { v->reserve(n); }); } // Writes types to an output stream. // Generic case. template <class T, typename std::enable_if<std::is_class<T>::value, T>::type* = nullptr> inline std::ostream &WriteType(std::ostream &strm, const T t) { t.Write(strm); return strm; } // Numeric (boolean, integral, floating-point) case. template <class T, typename std::enable_if<std::is_arithmetic<T>::value, T>::type* = nullptr> inline std::ostream &WriteType(std::ostream &strm, const T t) { return strm.write(reinterpret_cast<const char *>(&t), sizeof(T)); } // String case. inline std::ostream &WriteType(std::ostream &strm, const string &s) { // NOLINT int32 ns = s.size(); strm.write(reinterpret_cast<const char *>(&ns), sizeof(ns)); return strm.write(s.data(), ns); } // Declares types that can be written to an output stream. template <typename... T> std::ostream &WriteType(std::ostream &strm, const std::vector<T...> &c); template <typename... T> std::ostream &WriteType(std::ostream &strm, const std::list<T...> &c); template <typename... T> std::ostream &WriteType(std::ostream &strm, const std::set<T...> &c); template <typename... T> std::ostream &WriteType(std::ostream &strm, const std::map<T...> &c); template <typename... T> std::ostream &WriteType(std::ostream &strm, const std::unordered_map<T...> &c); template <typename... T> std::ostream &WriteType(std::ostream &strm, const std::unordered_set<T...> &c); // Pair case. template <typename S, typename T> inline std::ostream &WriteType(std::ostream &strm, const std::pair<S, T> &p) { // NOLINT WriteType(strm, p.first); WriteType(strm, p.second); return strm; } namespace internal { template <class C> std::ostream &WriteContainer(std::ostream &strm, const C &c) { const int64 n = c.size(); WriteType(strm, n); for (const auto &e : c) { WriteType(strm, e); } return strm; } } // namespace internal template <typename... T> std::ostream &WriteType(std::ostream &strm, const std::vector<T...> &c) { return internal::WriteContainer(strm, c); } template <typename... T> std::ostream &WriteType(std::ostream &strm, const std::list<T...> &c) { return internal::WriteContainer(strm, c); } template <typename... T> std::ostream &WriteType(std::ostream &strm, const std::set<T...> &c) { return internal::WriteContainer(strm, c); } template <typename... T> std::ostream &WriteType(std::ostream &strm, const std::map<T...> &c) { return internal::WriteContainer(strm, c); } template <typename... T> std::ostream &WriteType(std::ostream &strm, const std::unordered_map<T...> &c) { return internal::WriteContainer(strm, c); } template <typename... T> std::ostream &WriteType(std::ostream &strm, const std::unordered_set<T...> &c) { return internal::WriteContainer(strm, c); } // Utilities for converting between int64 or Weight and string. int64 StrToInt64(const string &s, const string &src, size_t nline, bool allow_negative, bool *error = nullptr); template <typename Weight> Weight StrToWeight(const string &s, const string &src, size_t nline) { Weight w; std::istringstream strm(s); strm >> w; if (!strm) { FSTERROR() << "StrToWeight: Bad weight = \"" << s << "\", source = " << src << ", line = " << nline; return Weight::NoWeight(); } return w; } template <typename Weight> void WeightToStr(Weight w, string *s) { std::ostringstream strm; strm.precision(9); strm << w; s->append(strm.str().data(), strm.str().size()); } // Utilities for reading/writing integer pairs (typically labels) // Modifies line using a vector of pointers to a buffer beginning with line. void SplitString(char *line, const char *delim, std::vector<char *> *vec, bool omit_empty_strings); template <typename I> bool ReadIntPairs(const string &filename, std::vector<std::pair<I, I>> *pairs, bool allow_negative = false) { std::ifstream strm(filename, std::ios_base::in); if (!strm) { LOG(ERROR) << "ReadIntPairs: Can't open file: " << filename; return false; } const int kLineLen = 8096; char line[kLineLen]; size_t nline = 0; pairs->clear(); while (strm.getline(line, kLineLen)) { ++nline; std::vector<char *> col; SplitString(line, " \t ", &col, true); // empty line or comment? if (col.empty() || col[0][0] == '\0' || col[0][0] == '#') continue; if (col.size() != 2) { LOG(ERROR) << "ReadIntPairs: Bad number of columns, " << "file = " << filename << ", line = " << nline; return false; } bool err; I i1 = StrToInt64(col[0], filename, nline, allow_negative, &err); if (err) return false; I i2 = StrToInt64(col[1], filename, nline, allow_negative, &err); if (err) return false; pairs->push_back(std::make_pair(i1, i2)); } return true; } template <typename I> bool WriteIntPairs(const string &filename, const std::vector<std::pair<I, I>> &pairs) { std::ostream *strm = &std::cout; if (!filename.empty()) { strm = new std::ofstream(filename); if (!*strm) { LOG(ERROR) << "WriteIntPairs: Can't open file: " << filename; return false; } } for (ssize_t n = 0; n < pairs.size(); ++n) { *strm << pairs[n].first << "\t" << pairs[n].second << " "; } if (!*strm) { LOG(ERROR) << "WriteIntPairs: Write failed: " << (filename.empty() ? "standard output" : filename); return false; } if (strm != &std::cout) delete strm; return true; } // Utilities for reading/writing label pairs. template <typename Label> bool ReadLabelPairs(const string &filename, std::vector<std::pair<Label, Label>> *pairs, bool allow_negative = false) { return ReadIntPairs(filename, pairs, allow_negative); } template <typename Label> bool WriteLabelPairs(const string &filename, const std::vector<std::pair<Label, Label>> &pairs) { return WriteIntPairs(filename, pairs); } // Utilities for converting a type name to a legal C symbol. void ConvertToLegalCSymbol(string *s); // Utilities for stream I/O. bool AlignInput(std::istream &strm); bool AlignOutput(std::ostream &strm); // An associative container for which testing membership is faster than an STL // set if members are restricted to an interval that excludes most non-members. // A Key must have ==, !=, and < operators defined. Element NoKey should be a // key that marks an uninitialized key and is otherwise unused. Find() returns // an STL const_iterator to the match found, otherwise it equals End(). template <class Key, Key NoKey> class CompactSet { public: using const_iterator = typename std::set<Key>::const_iterator; CompactSet() : min_key_(NoKey), max_key_(NoKey) {} CompactSet(const CompactSet<Key, NoKey> &compact_set) : set_(compact_set.set_), min_key_(compact_set.min_key_), max_key_(compact_set.max_key_) {} void Insert(Key key) { set_.insert(key); if (min_key_ == NoKey || key < min_key_) min_key_ = key; if (max_key_ == NoKey || max_key_ < key) max_key_ = key; } void Erase(Key key) { set_.erase(key); if (set_.empty()) { min_key_ = max_key_ = NoKey; } else if (key == min_key_) { ++min_key_; } else if (key == max_key_) { --max_key_; } } void Clear() { set_.clear(); min_key_ = max_key_ = NoKey; } const_iterator Find(Key key) const { if (min_key_ == NoKey || key < min_key_ || max_key_ < key) { return set_.end(); } else { return set_.find(key); } } bool Member(Key key) const { if (min_key_ == NoKey || key < min_key_ || max_key_ < key) { return false; // out of range } else if (min_key_ != NoKey && max_key_ + 1 == min_key_ + set_.size()) { return true; // dense range } else { return set_.count(key); } } const_iterator Begin() const { return set_.begin(); } const_iterator End() const { return set_.end(); } // All stored keys are greater than or equal to this value. Key LowerBound() const { return min_key_; } // All stored keys are less than or equal to this value. Key UpperBound() const { return max_key_; } private: std::set<Key> set_; Key min_key_; Key max_key_; void operator=(const CompactSet &) = delete; }; } // namespace fst #endif // FST_UTIL_H_ |