Blame view

tools/openfst-1.6.7/src/include/fst/bi-table.h 14.4 KB
8dcb6dfcb   Yannick Estève   first commit
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
  // See www.openfst.org for extensive documentation on this weighted
  // finite-state transducer library.
  //
  // Classes for representing a bijective mapping between an arbitrary entry
  // of type T and a signed integral ID.
  
  #ifndef FST_BI_TABLE_H_
  #define FST_BI_TABLE_H_
  
  #include <deque>
  #include <memory>
  #include <functional>
  #include <unordered_map>
  #include <unordered_set>
  #include <vector>
  
  #include <fst/log.h>
  #include <fst/memory.h>
  
  namespace fst {
  
  // Bitables model bijective mappings between entries of an arbitrary type T and
  // an signed integral ID of type I. The IDs are allocated starting from 0 in
  // order.
  //
  // template <class I, class T>
  // class BiTable {
  //  public:
  //
  //   // Required constructors.
  //   BiTable();
  //
  //   // Looks up integer ID from entry. If it doesn't exist and insert
  //   / is true, adds it; otherwise, returns -1.
  //   I FindId(const T &entry, bool insert = true);
  //
  //   // Looks up entry from integer ID.
  //   const T &FindEntry(I) const;
  //
  //   // Returns number of stored entries.
  //   I Size() const;
  // };
  
  // An implementation using a hash map for the entry to ID mapping. H is the
  // hash function and E is the equality function. If passed to the constructor,
  // ownership is given to this class.
  template <class I, class T, class H, class E = std::equal_to<T>>
  class HashBiTable {
   public:
    // Reserves space for table_size elements. If passing H and E to the
    // constructor, this class owns them.
    explicit HashBiTable(size_t table_size = 0, H *h = nullptr, E *e = nullptr) :
        hash_func_(h ? h : new H()), hash_equal_(e ? e : new E()),
        entry2id_(table_size, *hash_func_, *hash_equal_) {
      if (table_size) id2entry_.reserve(table_size);
    }
  
    HashBiTable(const HashBiTable<I, T, H, E> &table)
        : hash_func_(new H(*table.hash_func_)),
          hash_equal_(new E(*table.hash_equal_)),
          entry2id_(table.entry2id_.begin(), table.entry2id_.end(),
                    table.entry2id_.size(), *hash_func_, *hash_equal_),
          id2entry_(table.id2entry_) {}
  
    I FindId(const T &entry, bool insert = true) {
      if (!insert) {
        const auto it = entry2id_.find(entry);
        return it == entry2id_.end() ? -1 : it->second - 1;
      }
      I &id_ref = entry2id_[entry];
      if (id_ref == 0) {  // T not found; stores and assigns a new ID.
        id2entry_.push_back(entry);
        id_ref = id2entry_.size();
      }
      return id_ref - 1;  // NB: id_ref = ID + 1.
    }
  
    const T &FindEntry(I s) const { return id2entry_[s]; }
  
    I Size() const { return id2entry_.size(); }
  
    // TODO(riley): Add fancy clear-to-size, as in CompactHashBiTable.
    void Clear() {
      entry2id_.clear();
      id2entry_.clear();
    }
  
   private:
    std::unique_ptr<H> hash_func_;
    std::unique_ptr<E> hash_equal_;
    std::unordered_map<T, I, H, E> entry2id_;
    std::vector<T> id2entry_;
  };
  
  // Enables alternative hash set representations below.
  enum HSType { HS_STL = 0, HS_DENSE = 1, HS_SPARSE = 2, HS_FLAT = 3 };
  
  // Default hash set is STL hash_set.
  template <class K, class H, class E, HSType HS>
  struct HashSet : public std::unordered_set<K, H, E, PoolAllocator<K>> {
    explicit HashSet(size_t n = 0, const H &h = H(), const E &e = E())
        : std::unordered_set<K, H, E, PoolAllocator<K>>(n, h, e) {}
  
    void rehash(size_t n) {}
  };
  
  // An implementation using a hash set for the entry to ID mapping. The hash set
  // holds keys which are either the ID or kCurrentKey. These keys can be mapped
  // to entries either by looking up in the entry vector or, if kCurrentKey, in
  // current_entry_. The hash and key equality functions map to entries first. H
  // is the hash function and E is the equality function. If passed to the
  // constructor, ownership is given to this class.
  template <class I, class T, class H, class E = std::equal_to<T>,
            HSType HS = HS_FLAT>
  class CompactHashBiTable {
   public:
    friend class HashFunc;
    friend class HashEqual;
  
    // Reserves space for table_size elements. If passing H and E to the
    // constructor, this class owns them.
    explicit CompactHashBiTable(size_t table_size = 0, H *h = nullptr,
                                E *e = nullptr) :
          hash_func_(h ? h : new H()), hash_equal_(e ? e : new E()),
          compact_hash_func_(*this), compact_hash_equal_(*this),
          keys_(table_size, compact_hash_func_, compact_hash_equal_) {
      if (table_size) id2entry_.reserve(table_size);
    }
  
    CompactHashBiTable(const CompactHashBiTable<I, T, H, E, HS> &table)
        : hash_func_(new H(*table.hash_func_)),
          hash_equal_(new E(*table.hash_equal_)),
          compact_hash_func_(*this), compact_hash_equal_(*this),
          keys_(table.keys_.size(), compact_hash_func_, compact_hash_equal_),
          id2entry_(table.id2entry_) {
      keys_.insert(table.keys_.begin(), table.keys_.end());
    }
  
    I FindId(const T &entry, bool insert = true) {
      current_entry_ = &entry;
      if (insert) {
        auto result = keys_.insert(kCurrentKey);
        if (!result.second) return *result.first;  // Already exists.
        // Overwrites kCurrentKey with a new key value; this is safe because it
        // doesn't affect hashing or equality testing.
        I key = id2entry_.size();
        const_cast<I &>(*result.first) = key;
        id2entry_.push_back(entry);
        return key;
      }
      const auto it = keys_.find(kCurrentKey);
      return it == keys_.end() ? -1 : *it;
    }
  
    const T &FindEntry(I s) const { return id2entry_[s]; }
  
    I Size() const { return id2entry_.size(); }
  
    // Clears content; with argument, erases last n IDs.
    void Clear(ssize_t n = -1) {
      if (n < 0 || n >= id2entry_.size()) {  // Clears completely.
        keys_.clear();
        id2entry_.clear();
      } else if (n == id2entry_.size() - 1) {  // Leaves only key 0.
        const T entry = FindEntry(0);
        keys_.clear();
        id2entry_.clear();
        FindId(entry, true);
      } else {
        while (n-- > 0) {
          I key = id2entry_.size() - 1;
          keys_.erase(key);
          id2entry_.pop_back();
        }
        keys_.rehash(0);
      }
    }
  
   private:
    static constexpr I kCurrentKey = -1;
    static constexpr I kEmptyKey = -2;
    static constexpr I kDeletedKey = -3;
  
    class HashFunc {
     public:
      explicit HashFunc(const CompactHashBiTable &ht) : ht_(&ht) {}
  
      size_t operator()(I k) const {
        if (k >= kCurrentKey) {
          return (*ht_->hash_func_)(ht_->Key2Entry(k));
        } else {
          return 0;
        }
      }
  
     private:
      const CompactHashBiTable *ht_;
    };
  
    class HashEqual {
     public:
      explicit HashEqual(const CompactHashBiTable &ht) : ht_(&ht) {}
  
      bool operator()(I k1, I k2) const {
        if (k1 == k2) {
          return true;
        } else if (k1 >= kCurrentKey && k2 >= kCurrentKey) {
          return (*ht_->hash_equal_)(ht_->Key2Entry(k1), ht_->Key2Entry(k2));
        } else {
          return false;
        }
      }
  
     private:
      const CompactHashBiTable *ht_;
    };
  
    using KeyHashSet = HashSet<I, HashFunc, HashEqual, HS>;
  
    const T &Key2Entry(I k) const {
      if (k == kCurrentKey) {
        return *current_entry_;
      } else {
        return id2entry_[k];
      }
    }
  
    std::unique_ptr<H> hash_func_;
    std::unique_ptr<E> hash_equal_;
    HashFunc compact_hash_func_;
    HashEqual compact_hash_equal_;
    KeyHashSet keys_;
    std::vector<T> id2entry_;
    const T *current_entry_;
  };
  
  template <class I, class T, class H, class E, HSType HS>
  constexpr I CompactHashBiTable<I, T, H, E, HS>::kCurrentKey;
  
  template <class I, class T, class H, class E, HSType HS>
  constexpr I CompactHashBiTable<I, T, H, E, HS>::kEmptyKey;
  
  template <class I, class T, class H, class E, HSType HS>
  constexpr I CompactHashBiTable<I, T, H, E, HS>::kDeletedKey;
  
  // An implementation using a vector for the entry to ID mapping. It is passed a
  // function object FP that should fingerprint entries uniquely to an integer
  // that can used as a vector index. Normally, VectorBiTable constructs the FP
  // object. The user can instead pass in this object; in that case, VectorBiTable
  // takes its ownership.
  template <class I, class T, class FP>
  class VectorBiTable {
   public:
    // Reserves table_size cells of space. If passing FP argument to the
    // constructor, this class owns it.
    explicit VectorBiTable(FP *fp = nullptr, size_t table_size = 0) :
        fp_(fp ? fp : new FP()) {
      if (table_size) id2entry_.reserve(table_size);
    }
  
    VectorBiTable(const VectorBiTable<I, T, FP> &table)
        : fp_(new FP(*table.fp_)), fp2id_(table.fp2id_),
          id2entry_(table.id2entry_) {}
  
    I FindId(const T &entry, bool insert = true) {
      ssize_t fp = (*fp_)(entry);
      if (fp >= fp2id_.size()) fp2id_.resize(fp + 1);
      I &id_ref = fp2id_[fp];
      if (id_ref == 0) {  // T not found.
        if (insert) {     // Stores and assigns a new ID.
          id2entry_.push_back(entry);
          id_ref = id2entry_.size();
        } else {
          return -1;
        }
      }
      return id_ref - 1;  // NB: id_ref = ID + 1.
    }
  
    const T &FindEntry(I s) const { return id2entry_[s]; }
  
    I Size() const { return id2entry_.size(); }
  
    const FP &Fingerprint() const { return *fp_; }
  
   private:
    std::unique_ptr<FP> fp_;
    std::vector<I> fp2id_;
    std::vector<T> id2entry_;
  };
  
  // An implementation using a vector and a compact hash table. The selecting
  // functor S returns true for entries to be hashed in the vector. The
  // fingerprinting functor FP returns a unique fingerprint for each entry to be
  // hashed in the vector (these need to be suitable for indexing in a vector).
  // The hash functor H is used when hashing entry into the compact hash table.
  // If passed to the constructor, ownership is given to this class.
  template <class I, class T, class S, class FP, class H, HSType HS = HS_DENSE>
  class VectorHashBiTable {
   public:
    friend class HashFunc;
    friend class HashEqual;
  
    explicit VectorHashBiTable(S *s, FP *fp, H *h, size_t vector_size = 0,
                               size_t entry_size = 0)
        : selector_(s), fp_(fp), h_(h), hash_func_(*this), hash_equal_(*this),
          keys_(0, hash_func_, hash_equal_) {
      if (vector_size) fp2id_.reserve(vector_size);
      if (entry_size) id2entry_.reserve(entry_size);
    }
  
    VectorHashBiTable(const VectorHashBiTable<I, T, S, FP, H, HS> &table)
        : selector_(new S(table.s_)), fp_(new FP(*table.fp_)),
          h_(new H(*table.h_)), id2entry_(table.id2entry_),
          fp2id_(table.fp2id_), hash_func_(*this), hash_equal_(*this),
          keys_(table.keys_.size(), hash_func_, hash_equal_) {
      keys_.insert(table.keys_.begin(), table.keys_.end());
    }
  
    I FindId(const T &entry, bool insert = true) {
      if ((*selector_)(entry)) {  // Uses the vector if selector_(entry) == true.
        uint64 fp = (*fp_)(entry);
        if (fp2id_.size() <= fp) fp2id_.resize(fp + 1, 0);
        if (fp2id_[fp] == 0) {  // T not found.
          if (insert) {         // Stores and assigns a new ID.
            id2entry_.push_back(entry);
            fp2id_[fp] = id2entry_.size();
          } else {
            return -1;
          }
        }
        return fp2id_[fp] - 1;  // NB: assoc_value = ID + 1.
      } else {                  // Uses the hash table otherwise.
        current_entry_ = &entry;
        const auto it = keys_.find(kCurrentKey);
        if (it == keys_.end()) {
          if (insert) {
            I key = id2entry_.size();
            id2entry_.push_back(entry);
            keys_.insert(key);
            return key;
          } else {
            return -1;
          }
        } else {
          return *it;
        }
      }
    }
  
    const T &FindEntry(I s) const { return id2entry_[s]; }
  
    I Size() const { return id2entry_.size(); }
  
    const S &Selector() const { return *selector_; }
  
    const FP &Fingerprint() const { return *fp_; }
  
    const H &Hash() const { return *h_; }
  
   private:
    static constexpr I kCurrentKey = -1;
    static constexpr I kEmptyKey = -2;
  
    class HashFunc {
     public:
      explicit HashFunc(const VectorHashBiTable &ht) : ht_(&ht) {}
  
      size_t operator()(I k) const {
        if (k >= kCurrentKey) {
          return (*(ht_->h_))(ht_->Key2Entry(k));
        } else {
          return 0;
        }
      }
  
     private:
      const VectorHashBiTable *ht_;
    };
  
    class HashEqual {
     public:
      explicit HashEqual(const VectorHashBiTable &ht) : ht_(&ht) {}
  
      bool operator()(I k1, I k2) const {
        if (k1 >= kCurrentKey && k2 >= kCurrentKey) {
          return ht_->Key2Entry(k1) == ht_->Key2Entry(k2);
        } else {
          return k1 == k2;
        }
      }
  
     private:
      const VectorHashBiTable *ht_;
    };
  
    using KeyHashSet = HashSet<I, HashFunc, HashEqual, HS>;
  
    const T &Key2Entry(I k) const {
      if (k == kCurrentKey) {
        return *current_entry_;
      } else {
        return id2entry_[k];
      }
    }
  
    std::unique_ptr<S> selector_;  // True if entry hashed into vector.
    std::unique_ptr<FP> fp_;       // Fingerprint used for hashing into vector.
    std::unique_ptr<H> h_;         // Hash funcion used for hashing into hash_set.
  
    std::vector<T> id2entry_;  // Maps state IDs to entry.
    std::vector<I> fp2id_;     // Maps entry fingerprints to IDs.
  
    // Compact implementation of the hash table mapping entries to state IDs
    // using the hash function h_.
    HashFunc hash_func_;
    HashEqual hash_equal_;
    KeyHashSet keys_;
    const T *current_entry_;
  };
  
  template <class I, class T, class S, class FP, class H, HSType HS>
  constexpr I VectorHashBiTable<I, T, S, FP, H, HS>::kCurrentKey;
  
  template <class I, class T, class S, class FP, class H, HSType HS>
  constexpr I VectorHashBiTable<I, T, S, FP, H, HS>::kEmptyKey;
  
  // An implementation using a hash map for the entry to ID mapping. This version
  // permits erasing of arbitrary states. The entry T must have == defined and
  // its default constructor must produce a entry that will never be seen. F is
  // the hash function.
  template <class I, class T, class F>
  class ErasableBiTable {
   public:
    ErasableBiTable() : first_(0) {}
  
    I FindId(const T &entry, bool insert = true) {
      I &id_ref = entry2id_[entry];
      if (id_ref == 0) {  // T not found.
        if (insert) {     // Stores and assigns a new ID.
          id2entry_.push_back(entry);
          id_ref = id2entry_.size() + first_;
        } else {
          return -1;
        }
      }
      return id_ref - 1;  // NB: id_ref = ID + 1.
    }
  
    const T &FindEntry(I s) const { return id2entry_[s - first_]; }
  
    I Size() const { return id2entry_.size(); }
  
    void Erase(I s) {
      auto &ref = id2entry_[s - first_];
      entry2id_.erase(ref);
      ref = empty_entry_;
      while (!id2entry_.empty() && id2entry_.front() == empty_entry_) {
        id2entry_.pop_front();
        ++first_;
      }
    }
  
   private:
    std::unordered_map<T, I, F> entry2id_;
    std::deque<T> id2entry_;
    const T empty_entry_;
    I first_;  // I of first element in the deque.
  };
  
  }  // namespace fst
  
  #endif  // FST_BI_TABLE_H_