Blame view

tools/openfst-1.6.7/src/include/fst/dfs-visit.h 6.55 KB
8dcb6dfcb   Yannick Estève   first commit
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
  // See www.openfst.org for extensive documentation on this weighted
  // finite-state transducer library.
  //
  // Depth-first search visitation. See visit.h for more general search queue
  // disciplines.
  
  #ifndef FST_DFS_VISIT_H_
  #define FST_DFS_VISIT_H_
  
  #include <stack>
  #include <vector>
  
  #include <fst/arcfilter.h>
  #include <fst/fst.h>
  
  
  namespace fst {
  
  // Visitor Interface: class determining actions taken during a depth-first
  // search-style visit. If any of the boolean member functions return false, the
  // DFS is aborted by first calling FinishState() on all currently grey states
  // and then calling FinishVisit().
  //
  // This is similar to the more general visitor interface in visit.h, except
  // that FinishState returns additional information appropriate only for a DFS
  // and some methods names here are better suited to a DFS.
  //
  // template <class Arc>
  // class Visitor {
  //  public:
  //   using StateId = typename Arc::StateId;
  //
  //   Visitor(T *return_data);
  //
  //   // Invoked before DFS visit.
  //   void InitVisit(const Fst<Arc> &fst);
  //
  //   // Invoked when state discovered (2nd arg is DFS tree root).
  //   bool InitState(StateId s, StateId root);
  //
  //   // Invoked when tree arc to white/undiscovered state examined.
  //   bool TreeArc(StateId s, const Arc &arc);
  //
  //   // Invoked when back arc to grey/unfinished state examined.
  //   bool BackArc(StateId s, const Arc &arc);
  //
  //   // Invoked when forward or cross arc to black/finished state examined.
  //   bool ForwardOrCrossArc(StateId s, const Arc &arc);
  //
  //   // Invoked when state finished ('s' is tree root, 'parent' is kNoStateId,
  //   // and 'arc' is nullptr).
  //   void FinishState(StateId s, StateId parent, const Arc *arc);
  //
  //   // Invoked after DFS visit.
  //   void FinishVisit();
  // };
  
  namespace internal {
  
  // An FST state's DFS stack state.
  template <class FST>
  struct DfsState {
    using Arc = typename FST::Arc;
    using StateId = typename Arc::StateId;
  
    DfsState(const FST &fst, StateId s) : state_id(s), arc_iter(fst, s) {}
  
    void *operator new(size_t size, MemoryPool<DfsState<FST>> *pool) {
      return pool->Allocate();
    }
  
    static void Destroy(DfsState<FST> *dfs_state,
                        MemoryPool<DfsState<FST>> *pool) {
      if (dfs_state) {
        dfs_state->~DfsState<FST>();
        pool->Free(dfs_state);
      }
    }
  
    StateId state_id;           // FST state.
    ArcIterator<FST> arc_iter;  // The corresponding arcs.
  };
  
  }  // namespace internal
  
  // Performs depth-first visitation. Visitor class argument determines actions
  // and contains any return data. ArcFilter determines arcs that are considered.
  // If 'access_only' is true, performs visitation only to states accessible from
  // the initial state.
  //
  // Note this is similar to Visit() in visit.h called with a LIFO queue, except
  // this version has a Visitor class specialized and augmented for a DFS.
  template <class FST, class Visitor, class ArcFilter>
  void DfsVisit(const FST &fst, Visitor *visitor, ArcFilter filter,
                bool access_only = false) {
    using Arc = typename FST::Arc;
    using StateId = typename Arc::StateId;
    visitor->InitVisit(fst);
    const auto start = fst.Start();
    if (start == kNoStateId) {
      visitor->FinishVisit();
      return;
    }
    // An FST state's DFS status
    static constexpr uint8 kDfsWhite = 0;  // Undiscovered.
    static constexpr uint8 kDfsGrey = 1;   // Discovered but unfinished.
    static constexpr uint8 kDfsBlack = 2;  // Finished.
    std::vector<uint8> state_color;
    std::stack<internal::DfsState<FST> *> state_stack;  // DFS execution stack.
    MemoryPool<internal::DfsState<FST>> state_pool;     // Pool for DFSStates.
    auto nstates = start + 1;  // Number of known states in general case.
    bool expanded = false;
    if (fst.Properties(kExpanded, false)) {  // Tests if expanded case, then
      nstates = CountStates(fst);            // uses ExpandedFst::NumStates().
      expanded = true;
    }
    state_color.resize(nstates, kDfsWhite);
    StateIterator<FST> siter(fst);
    // Continue DFS while true.
    bool dfs = true;
    // Iterate over trees in DFS forest.
    for (auto root = start; dfs && root < nstates;) {
      state_color[root] = kDfsGrey;
      state_stack.push(new (&state_pool) internal::DfsState<FST>(fst, root));
      dfs = visitor->InitState(root, root);
      while (!state_stack.empty()) {
        auto *dfs_state = state_stack.top();
        const auto s = dfs_state->state_id;
        if (s >= state_color.size()) {
          nstates = s + 1;
          state_color.resize(nstates, kDfsWhite);
        }
        ArcIterator<FST> &aiter = dfs_state->arc_iter;
        if (!dfs || aiter.Done()) {
          state_color[s] = kDfsBlack;
          internal::DfsState<FST>::Destroy(dfs_state, &state_pool);
          state_stack.pop();
          if (!state_stack.empty()) {
            auto *parent_state = state_stack.top();
            auto &piter = parent_state->arc_iter;
            visitor->FinishState(s, parent_state->state_id, &piter.Value());
            piter.Next();
          } else {
            visitor->FinishState(s, kNoStateId, nullptr);
          }
          continue;
        }
        const auto &arc = aiter.Value();
        if (arc.nextstate >= state_color.size()) {
          nstates = arc.nextstate + 1;
          state_color.resize(nstates, kDfsWhite);
        }
        if (!filter(arc)) {
          aiter.Next();
          continue;
        }
        const auto next_color = state_color[arc.nextstate];
        switch (next_color) {
          default:
          case kDfsWhite:
            dfs = visitor->TreeArc(s, arc);
            if (!dfs) break;
            state_color[arc.nextstate] = kDfsGrey;
            state_stack.push(new (&state_pool)
                                 internal::DfsState<FST>(fst, arc.nextstate));
            dfs = visitor->InitState(arc.nextstate, root);
            break;
          case kDfsGrey:
            dfs = visitor->BackArc(s, arc);
            aiter.Next();
            break;
          case kDfsBlack:
            dfs = visitor->ForwardOrCrossArc(s, arc);
            aiter.Next();
            break;
        }
      }
      if (access_only) break;
      // Finds next tree root.
      for (root = root == start ? 0 : root + 1;
           root < nstates && state_color[root] != kDfsWhite; ++root) {
      }
      // Checks for a state beyond the largest known state.
      if (!expanded && root == nstates) {
        for (; !siter.Done(); siter.Next()) {
          if (siter.Value() == nstates) {
            ++nstates;
            state_color.push_back(kDfsWhite);
            break;
          }
        }
      }
    }
    visitor->FinishVisit();
  }
  
  template <class Arc, class Visitor>
  void DfsVisit(const Fst<Arc> &fst, Visitor *visitor) {
    DfsVisit(fst, visitor, AnyArcFilter<Arc>());
  }
  
  }  // namespace fst
  
  #endif  // FST_DFS_VISIT_H_