Blame view
tools/openfst-1.6.7/src/include/fst/dfs-visit.h
6.55 KB
8dcb6dfcb first commit |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 |
// See www.openfst.org for extensive documentation on this weighted // finite-state transducer library. // // Depth-first search visitation. See visit.h for more general search queue // disciplines. #ifndef FST_DFS_VISIT_H_ #define FST_DFS_VISIT_H_ #include <stack> #include <vector> #include <fst/arcfilter.h> #include <fst/fst.h> namespace fst { // Visitor Interface: class determining actions taken during a depth-first // search-style visit. If any of the boolean member functions return false, the // DFS is aborted by first calling FinishState() on all currently grey states // and then calling FinishVisit(). // // This is similar to the more general visitor interface in visit.h, except // that FinishState returns additional information appropriate only for a DFS // and some methods names here are better suited to a DFS. // // template <class Arc> // class Visitor { // public: // using StateId = typename Arc::StateId; // // Visitor(T *return_data); // // // Invoked before DFS visit. // void InitVisit(const Fst<Arc> &fst); // // // Invoked when state discovered (2nd arg is DFS tree root). // bool InitState(StateId s, StateId root); // // // Invoked when tree arc to white/undiscovered state examined. // bool TreeArc(StateId s, const Arc &arc); // // // Invoked when back arc to grey/unfinished state examined. // bool BackArc(StateId s, const Arc &arc); // // // Invoked when forward or cross arc to black/finished state examined. // bool ForwardOrCrossArc(StateId s, const Arc &arc); // // // Invoked when state finished ('s' is tree root, 'parent' is kNoStateId, // // and 'arc' is nullptr). // void FinishState(StateId s, StateId parent, const Arc *arc); // // // Invoked after DFS visit. // void FinishVisit(); // }; namespace internal { // An FST state's DFS stack state. template <class FST> struct DfsState { using Arc = typename FST::Arc; using StateId = typename Arc::StateId; DfsState(const FST &fst, StateId s) : state_id(s), arc_iter(fst, s) {} void *operator new(size_t size, MemoryPool<DfsState<FST>> *pool) { return pool->Allocate(); } static void Destroy(DfsState<FST> *dfs_state, MemoryPool<DfsState<FST>> *pool) { if (dfs_state) { dfs_state->~DfsState<FST>(); pool->Free(dfs_state); } } StateId state_id; // FST state. ArcIterator<FST> arc_iter; // The corresponding arcs. }; } // namespace internal // Performs depth-first visitation. Visitor class argument determines actions // and contains any return data. ArcFilter determines arcs that are considered. // If 'access_only' is true, performs visitation only to states accessible from // the initial state. // // Note this is similar to Visit() in visit.h called with a LIFO queue, except // this version has a Visitor class specialized and augmented for a DFS. template <class FST, class Visitor, class ArcFilter> void DfsVisit(const FST &fst, Visitor *visitor, ArcFilter filter, bool access_only = false) { using Arc = typename FST::Arc; using StateId = typename Arc::StateId; visitor->InitVisit(fst); const auto start = fst.Start(); if (start == kNoStateId) { visitor->FinishVisit(); return; } // An FST state's DFS status static constexpr uint8 kDfsWhite = 0; // Undiscovered. static constexpr uint8 kDfsGrey = 1; // Discovered but unfinished. static constexpr uint8 kDfsBlack = 2; // Finished. std::vector<uint8> state_color; std::stack<internal::DfsState<FST> *> state_stack; // DFS execution stack. MemoryPool<internal::DfsState<FST>> state_pool; // Pool for DFSStates. auto nstates = start + 1; // Number of known states in general case. bool expanded = false; if (fst.Properties(kExpanded, false)) { // Tests if expanded case, then nstates = CountStates(fst); // uses ExpandedFst::NumStates(). expanded = true; } state_color.resize(nstates, kDfsWhite); StateIterator<FST> siter(fst); // Continue DFS while true. bool dfs = true; // Iterate over trees in DFS forest. for (auto root = start; dfs && root < nstates;) { state_color[root] = kDfsGrey; state_stack.push(new (&state_pool) internal::DfsState<FST>(fst, root)); dfs = visitor->InitState(root, root); while (!state_stack.empty()) { auto *dfs_state = state_stack.top(); const auto s = dfs_state->state_id; if (s >= state_color.size()) { nstates = s + 1; state_color.resize(nstates, kDfsWhite); } ArcIterator<FST> &aiter = dfs_state->arc_iter; if (!dfs || aiter.Done()) { state_color[s] = kDfsBlack; internal::DfsState<FST>::Destroy(dfs_state, &state_pool); state_stack.pop(); if (!state_stack.empty()) { auto *parent_state = state_stack.top(); auto &piter = parent_state->arc_iter; visitor->FinishState(s, parent_state->state_id, &piter.Value()); piter.Next(); } else { visitor->FinishState(s, kNoStateId, nullptr); } continue; } const auto &arc = aiter.Value(); if (arc.nextstate >= state_color.size()) { nstates = arc.nextstate + 1; state_color.resize(nstates, kDfsWhite); } if (!filter(arc)) { aiter.Next(); continue; } const auto next_color = state_color[arc.nextstate]; switch (next_color) { default: case kDfsWhite: dfs = visitor->TreeArc(s, arc); if (!dfs) break; state_color[arc.nextstate] = kDfsGrey; state_stack.push(new (&state_pool) internal::DfsState<FST>(fst, arc.nextstate)); dfs = visitor->InitState(arc.nextstate, root); break; case kDfsGrey: dfs = visitor->BackArc(s, arc); aiter.Next(); break; case kDfsBlack: dfs = visitor->ForwardOrCrossArc(s, arc); aiter.Next(); break; } } if (access_only) break; // Finds next tree root. for (root = root == start ? 0 : root + 1; root < nstates && state_color[root] != kDfsWhite; ++root) { } // Checks for a state beyond the largest known state. if (!expanded && root == nstates) { for (; !siter.Done(); siter.Next()) { if (siter.Value() == nstates) { ++nstates; state_color.push_back(kDfsWhite); break; } } } } visitor->FinishVisit(); } template <class Arc, class Visitor> void DfsVisit(const Fst<Arc> &fst, Visitor *visitor) { DfsVisit(fst, visitor, AnyArcFilter<Arc>()); } } // namespace fst #endif // FST_DFS_VISIT_H_ |