Blame view

tools/openfst-1.6.7/src/include/fst/partition.h 12.3 KB
8dcb6dfcb   Yannick Estève   first commit
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
  // See www.openfst.org for extensive documentation on this weighted
  // finite-state transducer library.
  //
  // Functions and classes to create a partition of states.
  
  #ifndef FST_PARTITION_H_
  #define FST_PARTITION_H_
  
  #include <algorithm>
  #include <vector>
  
  
  #include <fst/queue.h>
  
  
  namespace fst {
  namespace internal {
  
  template <typename T>
  class PartitionIterator;
  
  // Defines a partitioning of elements, used to represent equivalence classes
  // for FST operations like minimization. T must be a signed integer type.
  //
  // The elements are numbered from 0 to num_elements - 1.
  // Initialize(num_elements) sets up the class for a given number of elements.
  // We maintain a partition of these elements into classes. The classes are also
  // numbered from zero; you can add a class with AddClass(), or add them in bulk
  // with AllocateClasses(num_classes). Initially the elements are not assigned
  // to any class; you set up the initial mapping from elements to classes by
  // calling Add(element_id, class_id). You can also move an element to a
  // different class by calling Move(element_id, class_id).
  //
  // We also support a rather specialized interface that allows you to efficiently
  // split classes in the Hopcroft minimization algorithm. This maintains a
  // binary partition of each class.  Let's call these, rather arbitrarily, the
  // 'yes' subset and the 'no' subset of each class, and assume that by default,
  // each element of a class is in its 'no' subset. When one calls
  // SplitOn(element_id), element_id is moved to the 'yes' subset of its class.
  // (If it was already in the 'yes' set, it just stays there). The aim is to
  // enable (later) splitting the class in two in time no greater than the time
  // already spent calling SplitOn() for that class. We keep a list of the classes
  // which have nonempty 'yes' sets, as visited_classes_. When one calls
  // FinalizeSplit(Queue *l), for each class in visited_classes_ whose 'yes'
  // and 'no' sets are both nonempty, it will create a new class consisting of
  // the smaller of the two subsets (and this class will be added to the queue),
  // and the old class will now be the larger of the two subsets. This call also
  // resets all the yes/no partitions so that everything is in the 'no' subsets.
  //
  // One cannot use the Move() function if SplitOn() has been called without
  // a subsequent call to FinalizeSplit()
  template <typename T>
  class Partition {
   public:
    Partition() {}
  
    explicit Partition(T num_elements) { Initialize(num_elements); }
  
    // Creates an empty partition for num_elements. This means that the elements
    // are not assigned to a class (i.e class_index = -1); you should set up the
    // number of classes using AllocateClasses() or AddClass(), and allocate each
    // element to a class by calling Add(element, class_id).
    void Initialize(size_t num_elements) {
      elements_.resize(num_elements);
      classes_.reserve(num_elements);
      classes_.clear();
      yes_counter_ = 1;
    }
  
    // Adds a class; returns new number of classes.
    T AddClass() {
      auto num_classes = classes_.size();
      classes_.resize(num_classes + 1);
      return num_classes;
    }
  
    // Adds 'num_classes' new (empty) classes.
    void AllocateClasses(T num_classes) {
      classes_.resize(classes_.size() + num_classes);
    }
  
    // Adds element_id to class_id. element_id should already have been allocated
    // by calling Initialize(num_elements)---or the constructor taking
    // num_elements---with num_elements > element_id. element_id must not
    // currently be a member of any class; once elements have been added to a
    // class, use the Move() method to move them from one class to another.
    void Add(T element_id, T class_id) {
      auto &this_element = elements_[element_id];
      auto &this_class = classes_[class_id];
      ++this_class.size;
      // Adds the element to the 'no' subset of the class.
      auto no_head = this_class.no_head;
      if (no_head >= 0) elements_[no_head].prev_element = element_id;
      this_class.no_head = element_id;
      this_element.class_id = class_id;
      // Adds to the 'no' subset of the class.
      this_element.yes = 0;
      this_element.next_element = no_head;
      this_element.prev_element = -1;
    }
  
    // Moves element_id from 'no' subset of its current class to 'no' subset of
    // class class_id. This may not work correctly if you have called SplitOn()
    // [for any element] and haven't subsequently called FinalizeSplit().
    void Move(T element_id, T class_id) {
      auto elements = &(elements_[0]);
      auto &element = elements[element_id];
      auto &old_class = classes_[element.class_id];
      --old_class.size;
      // Excises the element from the 'no' list of its old class, where it is
      // assumed to be.
      if (element.prev_element >= 0) {
        elements[element.prev_element].next_element = element.next_element;
      } else {
        old_class.no_head = element.next_element;
      }
      if (element.next_element >= 0) {
        elements[element.next_element].prev_element = element.prev_element;
      }
      // Adds to new class.
      Add(element_id, class_id);
    }
  
    // Moves element_id to the 'yes' subset of its class if it was in the 'no'
    // subset, and marks the class as having been visited.
    void SplitOn(T element_id) {
      auto elements = &(elements_[0]);
      auto &element = elements[element_id];
      if (element.yes == yes_counter_) {
        return;  // Already in the 'yes' set; nothing to do.
      }
      auto class_id = element.class_id;
      auto &this_class = classes_[class_id];
      // Excises the element from the 'no' list of its class.
      if (element.prev_element >= 0) {
        elements[element.prev_element].next_element = element.next_element;
      } else {
        this_class.no_head = element.next_element;
      }
      if (element.next_element >= 0) {
        elements[element.next_element].prev_element = element.prev_element;
      }
      // Adds the element to the 'yes' list.
      if (this_class.yes_head >= 0) {
        elements[this_class.yes_head].prev_element = element_id;
      } else {
        visited_classes_.push_back(class_id);
      }
      element.yes = yes_counter_;
      element.next_element = this_class.yes_head;
      element.prev_element = -1;
      this_class.yes_head = element_id;
      this_class.yes_size++;
    }
  
    // This should be called after one has possibly called SplitOn for one or more
    // elements, thus moving those elements to the 'yes' subset for their class.
    // For each class that has a nontrivial split (i.e., it's not the case that
    // all members are in the 'yes' or 'no' subset), this function creates a new
    // class containing the smaller of the two subsets of elements, leaving the
    // larger group of elements in the old class. The identifier of the new class
    // will be added to the queue provided as the pointer L. This method then
    // moves all elements to the 'no' subset of their class.
    template <class Queue>
    void FinalizeSplit(Queue *queue) {
      for (const auto &visited_class : visited_classes_) {
        const auto new_class = SplitRefine(visited_class);
        if (new_class != -1 && queue) queue->Enqueue(new_class);
      }
      visited_classes_.clear();
      // Incrementation sets all the 'yes' members of the elements to false.
      ++yes_counter_;
    }
  
    const T ClassId(T element_id) const { return elements_[element_id].class_id; }
  
    const size_t ClassSize(T class_id) const { return classes_[class_id].size; }
  
    const T NumClasses() const { return classes_.size(); }
  
   private:
    friend class PartitionIterator<T>;
  
    // Information about a given element.
    struct Element {
      T class_id;      // Class ID of this element.
      T yes;           // This is to be interpreted as a bool, true if it's in the
                       // 'yes' set of this class. The interpretation as bool is
                       // (yes == yes_counter_ ? true : false).
      T next_element;  // Next element in the 'no' list or 'yes' list of this
                       // class, whichever of the two we belong to (think of
                       // this as the 'next' in a doubly-linked list, although
                       // it is an index into the elements array). Negative
                       // values corresponds to null.
      T prev_element;  // Previous element in the 'no' or 'yes' doubly linked
                       // list. Negative values corresponds to null.
    };
  
    // Information about a given class.
    struct Class {
      Class() : size(0), yes_size(0), no_head(-1), yes_head(-1) {}
      T size;      // Total number of elements in this class ('no' plus 'yes'
                   // subsets).
      T yes_size;  // Total number of elements of 'yes' subset of this class.
      T no_head;   // Index of head element of doubly-linked list in 'no' subset.
                   // Everything is in the 'no' subset until you call SplitOn().
                   // -1 means no element.
      T yes_head;  // Index of head element of doubly-linked list in 'yes' subset.
                   // -1 means no element.
    };
  
    // This method, called from FinalizeSplit(), checks whether a class has to
    // be split (a class will be split only if its 'yes' and 'no' subsets are
    // both nonempty, but one can assume that since this function was called, the
    // 'yes' subset is nonempty). It splits by taking the smaller subset and
    // making it a new class, and leaving the larger subset of elements in the
    // 'no' subset of the old class. It returns the new class if created, or -1
    // if none was created.
    T SplitRefine(T class_id) {
      auto yes_size = classes_[class_id].yes_size;
      auto size = classes_[class_id].size;
      auto no_size = size - yes_size;
      if (no_size == 0) {
        // All members are in the 'yes' subset, so we don't have to create a new
        // class, just move them all to the 'no' subset.
        classes_[class_id].no_head = classes_[class_id].yes_head;
        classes_[class_id].yes_head = -1;
        classes_[class_id].yes_size = 0;
        return -1;
      } else {
        auto new_class_id = classes_.size();
        classes_.resize(classes_.size() + 1);
        auto &old_class = classes_[class_id];
        auto &new_class = classes_[new_class_id];
        // The new_class will have the values from the constructor.
        if (no_size < yes_size) {
          // Moves the 'no' subset to new class ('no' subset).
          new_class.no_head = old_class.no_head;
          new_class.size = no_size;
          // And makes the 'yes' subset of the old class ('no' subset).
          old_class.no_head = old_class.yes_head;
          old_class.yes_head = -1;
          old_class.size = yes_size;
          old_class.yes_size = 0;
        } else {
          // Moves the 'yes' subset to the new class (to the 'no' subset)
          new_class.size = yes_size;
          new_class.no_head = old_class.yes_head;
          // Retains only the 'no' subset in the old class.
          old_class.size = no_size;
          old_class.yes_size = 0;
          old_class.yes_head = -1;
        }
        auto elements = &(elements_[0]);
        // Updates the 'class_id' of all the elements we moved.
        for (auto e = new_class.no_head; e >= 0; e = elements[e].next_element) {
          elements[e].class_id = new_class_id;
        }
        return new_class_id;
      }
    }
  
    // elements_[i] contains all info about the i'th element.
    std::vector<Element> elements_;
    // classes_[i] contains all info about the i'th class.
    std::vector<Class> classes_;
    // Set of visited classes to be used in split refine.
    std::vector<T> visited_classes_;
    // yes_counter_ is used in interpreting the 'yes' members of class Element.
    // If element.yes == yes_counter_, we interpret that element as being in the
    // 'yes' subset of its class. This allows us to, in effect, set all those
    // bools to false at a stroke by incrementing yes_counter_.
    T yes_counter_;
  };
  
  // Iterates over members of the 'no' subset of a class in a partition. (When
  // this is used, everything is in the 'no' subset).
  template <typename T>
  class PartitionIterator {
   public:
    using Element = typename Partition<T>::Element;
  
    PartitionIterator(const Partition<T> &partition, T class_id)
        : partition_(partition),
          element_id_(partition_.classes_[class_id].no_head),
          class_id_(class_id) {}
  
    bool Done() { return element_id_ < 0; }
  
    const T Value() { return element_id_; }
  
    void Next() { element_id_ = partition_.elements_[element_id_].next_element; }
  
    void Reset() { element_id_ = partition_.classes_[class_id_].no_head; }
  
   private:
    const Partition<T> &partition_;
    T element_id_;
    T class_id_;
  };
  
  }  // namespace internal
  }  // namespace fst
  
  #endif  // FST_PARTITION_H_