Blame view

tools/openfst-1.6.7/src/include/fst/queue.h 26 KB
8dcb6dfcb   Yannick Estève   first commit
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
  // See www.openfst.org for extensive documentation on this weighted
  // finite-state transducer library.
  //
  // Functions and classes for various FST state queues with a unified interface.
  
  #ifndef FST_QUEUE_H_
  #define FST_QUEUE_H_
  
  #include <deque>
  #include <memory>
  #include <type_traits>
  #include <utility>
  #include <vector>
  
  #include <fst/log.h>
  
  #include <fst/arcfilter.h>
  #include <fst/connect.h>
  #include <fst/heap.h>
  #include <fst/topsort.h>
  
  
  namespace fst {
  
  // The Queue interface is:
  //
  // template <class S>
  // class Queue {
  //  public:
  //   using StateId = S;
  //
  //   // Constructor: may need args (e.g., FST, comparator) for some queues.
  //   Queue(...) override;
  //
  //   // Returns the head of the queue.
  //   StateId Head() const override;
  //
  //   // Inserts a state.
  //   void Enqueue(StateId s) override;
  //
  //   // Removes the head of the queue.
  //   void Dequeue() override;
  //
  //   // Updates ordering of state s when weight changes, if necessary.
  //   void Update(StateId s) override;
  //
  //   // Is the queue empty?
  //   bool Empty() const override;
  //
  //   // Removes all states from the queue.
  //   void Clear() override;
  // };
  
  // State queue types.
  enum QueueType {
    TRIVIAL_QUEUE = 0,         // Single state queue.
    FIFO_QUEUE = 1,            // First-in, first-out queue.
    LIFO_QUEUE = 2,            // Last-in, first-out queue.
    SHORTEST_FIRST_QUEUE = 3,  // Shortest-first queue.
    TOP_ORDER_QUEUE = 4,       // Topologically-ordered queue.
    STATE_ORDER_QUEUE = 5,     // State ID-ordered queue.
    SCC_QUEUE = 6,             // Component graph top-ordered meta-queue.
    AUTO_QUEUE = 7,            // Auto-selected queue.
    OTHER_QUEUE = 8
  };
  
  // QueueBase, templated on the StateId, is a virtual base class shared by all
  // queues considered by AutoQueue.
  template <class S>
  class QueueBase {
   public:
    using StateId = S;
  
    virtual ~QueueBase() {}
  
    // Concrete implementation.
  
    explicit QueueBase(QueueType type) : queue_type_(type), error_(false) {}
  
    void SetError(bool error) { error_ = error; }
  
    bool Error() const { return error_; }
  
    QueueType Type() const { return queue_type_; }
  
    // Virtual interface.
  
    virtual StateId Head() const = 0;
    virtual void Enqueue(StateId) = 0;
    virtual void Dequeue() = 0;
    virtual void Update(StateId) = 0;
    virtual bool Empty() const = 0;
    virtual void Clear() = 0;
  
   private:
    QueueType queue_type_;
    bool error_;
  };
  
  // Trivial queue discipline; one may enqueue at most one state at a time. It
  // can be used for strongly connected components with only one state and no
  // self-loops.
  template <class S>
  class TrivialQueue : public QueueBase<S> {
   public:
    using StateId = S;
  
    TrivialQueue() : QueueBase<StateId>(TRIVIAL_QUEUE), front_(kNoStateId) {}
  
    virtual ~TrivialQueue() = default;
  
    StateId Head() const final { return front_; }
  
    void Enqueue(StateId s) final { front_ = s; }
  
    void Dequeue() final { front_ = kNoStateId; }
  
    void Update(StateId) final {}
  
    bool Empty() const final { return front_ == kNoStateId; }
  
    void Clear() final { front_ = kNoStateId; }
  
   private:
    StateId front_;
  };
  
  // First-in, first-out queue discipline.
  //
  // This is not a final class.
  template <class S>
  class FifoQueue : public QueueBase<S> {
   public:
    using StateId = S;
  
    FifoQueue() : QueueBase<StateId>(FIFO_QUEUE) {}
  
    virtual ~FifoQueue() = default;
  
    StateId Head() const override { return queue_.back(); }
  
    void Enqueue(StateId s) override { queue_.push_front(s); }
  
    void Dequeue() override { queue_.pop_back(); }
  
    void Update(StateId) override {}
  
    bool Empty() const override { return queue_.empty(); }
  
    void Clear() override { queue_.clear(); }
  
   private:
    std::deque<StateId> queue_;
  };
  
  // Last-in, first-out queue discipline.
  template <class S>
  class LifoQueue : public QueueBase<S> {
   public:
    using StateId = S;
  
    LifoQueue() : QueueBase<StateId>(LIFO_QUEUE) {}
  
    virtual ~LifoQueue() = default;
  
    StateId Head() const final { return queue_.front(); }
  
    void Enqueue(StateId s) final { queue_.push_front(s); }
  
    void Dequeue() final { queue_.pop_front(); }
  
    void Update(StateId) final {}
  
    bool Empty() const final { return queue_.empty(); }
  
    void Clear() final { queue_.clear(); }
  
   private:
    std::deque<StateId> queue_;
  };
  
  // Shortest-first queue discipline, templated on the StateId and as well as a
  // comparison functor used to compare two StateIds. If a (single) state's order
  // changes, it can be reordered in the queue with a call to Update(). If update
  // is false, call to Update() does not reorder the queue.
  //
  // This is not a final class.
  template <typename S, typename Compare, bool update = true>
  class ShortestFirstQueue : public QueueBase<S> {
   public:
    using StateId = S;
  
    explicit ShortestFirstQueue(Compare comp)
        : QueueBase<StateId>(SHORTEST_FIRST_QUEUE), heap_(comp) {}
  
    virtual ~ShortestFirstQueue() = default;
  
    StateId Head() const override { return heap_.Top(); }
  
    void Enqueue(StateId s) override {
      if (update) {
        for (StateId i = key_.size(); i <= s; ++i) key_.push_back(kNoStateId);
        key_[s] = heap_.Insert(s);
      } else {
        heap_.Insert(s);
      }
    }
  
    void Dequeue() override {
      if (update) {
        key_[heap_.Pop()] = kNoStateId;
      } else {
        heap_.Pop();
      }
    }
  
    void Update(StateId s) override {
      if (!update) return;
      if (s >= key_.size() || key_[s] == kNoStateId) {
        Enqueue(s);
      } else {
        heap_.Update(key_[s], s);
      }
    }
  
    bool Empty() const override { return heap_.Empty(); }
  
    void Clear() override {
      heap_.Clear();
      if (update) key_.clear();
    }
  
    const Compare &GetCompare() const { return heap_.GetCompare(); }
  
   private:
    Heap<StateId, Compare> heap_;
    std::vector<ssize_t> key_;
  };
  
  namespace internal {
  
  // Given a vector that maps from states to weights, and a comparison functor
  // for weights, this class defines a comparison function object between states.
  template <typename StateId, typename Less>
  class StateWeightCompare {
   public:
    using Weight = typename Less::Weight;
  
    StateWeightCompare(const std::vector<Weight> &weights, const Less &less)
        : weights_(weights), less_(less) {}
  
    bool operator()(const StateId s1, const StateId s2) const {
      return less_(weights_[s1], weights_[s2]);
    }
  
   private:
    // Borrowed references.
    const std::vector<Weight> &weights_;
    const Less &less_;
  };
  
  }  // namespace internal
  
  // Shortest-first queue discipline, templated on the StateId and Weight, is
  // specialized to use the weight's natural order for the comparison function.
  template <typename S, typename Weight>
  class NaturalShortestFirstQueue final
      : public ShortestFirstQueue<
            S, internal::StateWeightCompare<S, NaturalLess<Weight>>> {
   public:
    using StateId = S;
    using Compare = internal::StateWeightCompare<StateId, NaturalLess<Weight>>;
  
    explicit NaturalShortestFirstQueue(const std::vector<Weight> &distance)
        : ShortestFirstQueue<StateId, Compare>(Compare(distance, less_)) {}
  
    virtual ~NaturalShortestFirstQueue() = default;
  
   private:
    // This is non-static because the constructor for non-idempotent weights will
    // result in a an error.
    const NaturalLess<Weight> less_{};
  };
  
  // Topological-order queue discipline, templated on the StateId. States are
  // ordered in the queue topologically. The FST must be acyclic.
  template <class S>
  class TopOrderQueue : public QueueBase<S> {
   public:
    using StateId = S;
  
    // This constructor computes the topological order. It accepts an arc filter
    // to limit the transitions considered in that computation (e.g., only the
    // epsilon graph).
    template <class Arc, class ArcFilter>
    TopOrderQueue(const Fst<Arc> &fst, ArcFilter filter)
        : QueueBase<StateId>(TOP_ORDER_QUEUE),
          front_(0),
          back_(kNoStateId),
          order_(0),
          state_(0) {
      bool acyclic;
      TopOrderVisitor<Arc> top_order_visitor(&order_, &acyclic);
      DfsVisit(fst, &top_order_visitor, filter);
      if (!acyclic) {
        FSTERROR() << "TopOrderQueue: FST is not acyclic";
        QueueBase<S>::SetError(true);
      }
      state_.resize(order_.size(), kNoStateId);
    }
  
    // This constructor is passed the pre-computed topological order.
    explicit TopOrderQueue(const std::vector<StateId> &order)
        : QueueBase<StateId>(TOP_ORDER_QUEUE),
          front_(0),
          back_(kNoStateId),
          order_(order),
          state_(order.size(), kNoStateId) {}
  
    virtual ~TopOrderQueue() = default;
  
    StateId Head() const final { return state_[front_]; }
  
    void Enqueue(StateId s) final {
      if (front_ > back_) {
        front_ = back_ = order_[s];
      } else if (order_[s] > back_) {
        back_ = order_[s];
      } else if (order_[s] < front_) {
        front_ = order_[s];
      }
      state_[order_[s]] = s;
    }
  
    void Dequeue() final {
      state_[front_] = kNoStateId;
      while ((front_ <= back_) && (state_[front_] == kNoStateId)) ++front_;
    }
  
    void Update(StateId) final {}
  
    bool Empty() const final { return front_ > back_; }
  
    void Clear() final {
      for (StateId s = front_; s <= back_; ++s) state_[s] = kNoStateId;
      back_ = kNoStateId;
      front_ = 0;
    }
  
   private:
    StateId front_;
    StateId back_;
    std::vector<StateId> order_;
    std::vector<StateId> state_;
  };
  
  // State order queue discipline, templated on the StateId. States are ordered in
  // the queue by state ID.
  template <class S>
  class StateOrderQueue : public QueueBase<S> {
   public:
    using StateId = S;
  
    StateOrderQueue()
        : QueueBase<StateId>(STATE_ORDER_QUEUE), front_(0), back_(kNoStateId) {}
  
    virtual ~StateOrderQueue() = default;
  
    StateId Head() const final { return front_; }
  
    void Enqueue(StateId s) final {
      if (front_ > back_) {
        front_ = back_ = s;
      } else if (s > back_) {
        back_ = s;
      } else if (s < front_) {
        front_ = s;
      }
      while (enqueued_.size() <= s) enqueued_.push_back(false);
      enqueued_[s] = true;
    }
  
    void Dequeue() final {
      enqueued_[front_] = false;
      while ((front_ <= back_) && (enqueued_[front_] == false)) ++front_;
    }
  
    void Update(StateId) final {}
  
    bool Empty() const final { return front_ > back_; }
  
    void Clear() final {
      for (StateId i = front_; i <= back_; ++i) enqueued_[i] = false;
      front_ = 0;
      back_ = kNoStateId;
    }
  
   private:
    StateId front_;
    StateId back_;
    std::vector<bool> enqueued_;
  };
  
  // SCC topological-order meta-queue discipline, templated on the StateId and a
  // queue used inside each SCC. It visits the SCCs of an FST in topological
  // order. Its constructor is passed the queues to to use within an SCC.
  template <class S, class Queue>
  class SccQueue : public QueueBase<S> {
   public:
    using StateId = S;
  
    // Constructor takes a vector specifying the SCC number per state and a
    // vector giving the queue to use per SCC number.
    SccQueue(const std::vector<StateId> &scc,
             std::vector<std::unique_ptr<Queue>> *queue)
        : QueueBase<StateId>(SCC_QUEUE),
          queue_(queue),
          scc_(scc),
          front_(0),
          back_(kNoStateId) {}
  
    virtual ~SccQueue() = default;
  
    StateId Head() const final {
      while ((front_ <= back_) &&
             (((*queue_)[front_] && (*queue_)[front_]->Empty()) ||
              (((*queue_)[front_] == nullptr) &&
               ((front_ >= trivial_queue_.size()) ||
                (trivial_queue_[front_] == kNoStateId))))) {
        ++front_;
      }
      if ((*queue_)[front_]) {
        return (*queue_)[front_]->Head();
      } else {
        return trivial_queue_[front_];
      }
    }
  
    void Enqueue(StateId s) final {
      if (front_ > back_) {
        front_ = back_ = scc_[s];
      } else if (scc_[s] > back_) {
        back_ = scc_[s];
      } else if (scc_[s] < front_) {
        front_ = scc_[s];
      }
      if ((*queue_)[scc_[s]]) {
        (*queue_)[scc_[s]]->Enqueue(s);
      } else {
        while (trivial_queue_.size() <= scc_[s]) {
          trivial_queue_.push_back(kNoStateId);
        }
        trivial_queue_[scc_[s]] = s;
      }
    }
  
    void Dequeue() final {
      if ((*queue_)[front_]) {
        (*queue_)[front_]->Dequeue();
      } else if (front_ < trivial_queue_.size()) {
        trivial_queue_[front_] = kNoStateId;
      }
    }
  
    void Update(StateId s) final {
      if ((*queue_)[scc_[s]]) (*queue_)[scc_[s]]->Update(s);
    }
  
    bool Empty() const final {
      // Queues SCC number back_ is not empty unless back_ == front_.
      if (front_ < back_) {
        return false;
      } else if (front_ > back_) {
        return true;
      } else if ((*queue_)[front_]) {
        return (*queue_)[front_]->Empty();
      } else {
        return (front_ >= trivial_queue_.size()) ||
               (trivial_queue_[front_] == kNoStateId);
      }
    }
  
    void Clear() final {
      for (StateId i = front_; i <= back_; ++i) {
        if ((*queue_)[i]) {
          (*queue_)[i]->Clear();
        } else if (i < trivial_queue_.size()) {
          trivial_queue_[i] = kNoStateId;
        }
      }
      front_ = 0;
      back_ = kNoStateId;
    }
  
   private:
    std::vector<std::unique_ptr<Queue>> *queue_;
    const std::vector<StateId> &scc_;
    mutable StateId front_;
    StateId back_;
    std::vector<StateId> trivial_queue_;
  };
  
  // Automatic queue discipline. It selects a queue discipline for a given FST
  // based on its properties.
  template <class S>
  class AutoQueue : public QueueBase<S> {
   public:
    using StateId = S;
  
    // This constructor takes a state distance vector that, if non-null and if
    // the Weight type has the path property, will entertain the shortest-first
    // queue using the natural order w.r.t to the distance.
    template <class Arc, class ArcFilter>
    AutoQueue(const Fst<Arc> &fst,
              const std::vector<typename Arc::Weight> *distance, ArcFilter filter)
        : QueueBase<StateId>(AUTO_QUEUE) {
      using Weight = typename Arc::Weight;
      using Less = NaturalLess<Weight>;
      using Compare = internal::StateWeightCompare<StateId, Less>;
      // First checks if the FST is known to have these properties.
      const auto props =
          fst.Properties(kAcyclic | kCyclic | kTopSorted | kUnweighted, false);
      if ((props & kTopSorted) || fst.Start() == kNoStateId) {
        queue_.reset(new StateOrderQueue<StateId>());
        VLOG(2) << "AutoQueue: using state-order discipline";
      } else if (props & kAcyclic) {
        queue_.reset(new TopOrderQueue<StateId>(fst, filter));
        VLOG(2) << "AutoQueue: using top-order discipline";
      } else if ((props & kUnweighted) && (Weight::Properties() & kIdempotent)) {
        queue_.reset(new LifoQueue<StateId>());
        VLOG(2) << "AutoQueue: using LIFO discipline";
      } else {
        uint64 properties;
        // Decomposes into strongly-connected components.
        SccVisitor<Arc> scc_visitor(&scc_, nullptr, nullptr, &properties);
        DfsVisit(fst, &scc_visitor, filter);
        auto nscc = *std::max_element(scc_.begin(), scc_.end()) + 1;
        std::vector<QueueType> queue_types(nscc);
        std::unique_ptr<Less> less;
        std::unique_ptr<Compare> comp;
        if (distance && (Weight::Properties() & kPath) == kPath) {
          less.reset(new Less);
          comp.reset(new Compare(*distance, *less));
        }
        // Finds the queue type to use per SCC.
        bool unweighted;
        bool all_trivial;
        SccQueueType(fst, scc_, &queue_types, filter, less.get(), &all_trivial,
                     &unweighted);
        // If unweighted and semiring is idempotent, uses LIFO queue.
        if (unweighted) {
          queue_.reset(new LifoQueue<StateId>());
          VLOG(2) << "AutoQueue: using LIFO discipline";
          return;
        }
        // If all the SCC are trivial, the FST is acyclic and the scc number gives
        // the topological order.
        if (all_trivial) {
          queue_.reset(new TopOrderQueue<StateId>(scc_));
          VLOG(2) << "AutoQueue: using top-order discipline";
          return;
        }
        VLOG(2) << "AutoQueue: using SCC meta-discipline";
        queues_.resize(nscc);
        for (StateId i = 0; i < nscc; ++i) {
          switch (queue_types[i]) {
            case TRIVIAL_QUEUE:
              queues_[i].reset();
              VLOG(3) << "AutoQueue: SCC #" << i << ": using trivial discipline";
              break;
            case SHORTEST_FIRST_QUEUE:
              queues_[i].reset(
                  new ShortestFirstQueue<StateId, Compare, false>(*comp));
              VLOG(3) << "AutoQueue: SCC #" << i
                      << ": using shortest-first discipline";
              break;
            case LIFO_QUEUE:
              queues_[i].reset(new LifoQueue<StateId>());
              VLOG(3) << "AutoQueue: SCC #" << i << ": using LIFO discipline";
              break;
            case FIFO_QUEUE:
            default:
              queues_[i].reset(new FifoQueue<StateId>());
              VLOG(3) << "AutoQueue: SCC #" << i << ": using FIFO discipine";
              break;
          }
        }
        queue_.reset(new SccQueue<StateId, QueueBase<StateId>>(scc_, &queues_));
      }
    }
  
    virtual ~AutoQueue() = default;
  
    StateId Head() const final { return queue_->Head(); }
  
    void Enqueue(StateId s) final { queue_->Enqueue(s); }
  
    void Dequeue() final { queue_->Dequeue(); }
  
    void Update(StateId s) final { queue_->Update(s); }
  
    bool Empty() const final { return queue_->Empty(); }
  
    void Clear() final { queue_->Clear(); }
  
   private:
    template <class Arc, class ArcFilter, class Less>
    static void SccQueueType(const Fst<Arc> &fst, const std::vector<StateId> &scc,
                             std::vector<QueueType> *queue_types,
                             ArcFilter filter, Less *less, bool *all_trivial,
                             bool *unweighted);
  
    std::unique_ptr<QueueBase<StateId>> queue_;
    std::vector<std::unique_ptr<QueueBase<StateId>>> queues_;
    std::vector<StateId> scc_;
  };
  
  // Examines the states in an FST's strongly connected components and determines
  // which type of queue to use per SCC. Stores result as a vector of QueueTypes
  // which is assumed to have length equal to the number of SCCs. An arc filter
  // is used to limit the transitions considered (e.g., only the epsilon graph).
  // The argument all_trivial is set to true if every queue is the trivial queue.
  // The argument unweighted is set to true if the semiring is idempotent and all
  // the arc weights are equal to Zero() or One().
  template <class StateId>
  template <class Arc, class ArcFilter, class Less>
  void AutoQueue<StateId>::SccQueueType(const Fst<Arc> &fst,
                                        const std::vector<StateId> &scc,
                                        std::vector<QueueType> *queue_type,
                                        ArcFilter filter, Less *less,
                                        bool *all_trivial, bool *unweighted) {
    using StateId = typename Arc::StateId;
    using Weight = typename Arc::Weight;
    *all_trivial = true;
    *unweighted = true;
    for (StateId i = 0; i < queue_type->size(); ++i) {
      (*queue_type)[i] = TRIVIAL_QUEUE;
    }
    for (StateIterator<Fst<Arc>> sit(fst); !sit.Done(); sit.Next()) {
      const auto state = sit.Value();
      for (ArcIterator<Fst<Arc>> ait(fst, state); !ait.Done(); ait.Next()) {
        const auto &arc = ait.Value();
        if (!filter(arc)) continue;
        if (scc[state] == scc[arc.nextstate]) {
          auto &type = (*queue_type)[scc[state]];
          if (!less || ((*less)(arc.weight, Weight::One()))) {
            type = FIFO_QUEUE;
          } else if ((type == TRIVIAL_QUEUE) || (type == LIFO_QUEUE)) {
            if (!(Weight::Properties() & kIdempotent) ||
                (arc.weight != Weight::Zero() && arc.weight != Weight::One())) {
              type = SHORTEST_FIRST_QUEUE;
            } else {
              type = LIFO_QUEUE;
            }
          }
          if (type != TRIVIAL_QUEUE) *all_trivial = false;
        }
        if (!(Weight::Properties() & kIdempotent) ||
            (arc.weight != Weight::Zero() && arc.weight != Weight::One())) {
          *unweighted = false;
        }
      }
    }
  }
  
  // An A* estimate is a function object that maps from a state ID to a an
  // estimate of the shortest distance to the final states.
  
  // A trivial A* estimate, yielding a queue which behaves the same in Dijkstra's
  // algorithm.
  template <typename StateId, typename Weight>
  struct TrivialAStarEstimate {
    const Weight &operator()(StateId) const { return Weight::One(); }
  };
  
  // A non-trivial A* estimate using a vector of the estimated future costs.
  template <typename StateId, typename Weight>
  class NaturalAStarEstimate {
   public:
    NaturalAStarEstimate(const std::vector<Weight> &beta) :
            beta_(beta) {}
  
    const Weight &operator()(StateId s) const { return beta_[s]; }
  
   private:
    const std::vector<Weight> &beta_;
  };
  
  // Given a vector that maps from states to weights representing the shortest
  // distance from the initial state, a comparison function object between
  // weights, and an estimate of the shortest distance to the final states, this
  // class defines a comparison function object between states.
  template <typename S, typename Less, typename Estimate>
  class AStarWeightCompare {
   public:
    using StateId = S;
    using Weight = typename Less::Weight;
  
    AStarWeightCompare(const std::vector<Weight> &weights, const Less &less,
                       const Estimate &estimate)
        : weights_(weights), less_(less), estimate_(estimate) {}
  
    bool operator()(StateId s1, StateId s2) const {
      const auto w1 = Times(weights_[s1], estimate_(s1));
      const auto w2 = Times(weights_[s2], estimate_(s2));
      return less_(w1, w2);
    }
  
    const Estimate &GetEstimate() const { return estimate_; }
  
   private:
    const std::vector<Weight> &weights_;
    const Less &less_;
    const Estimate &estimate_;
  };
  
  // A* queue discipline templated on StateId, Weight, and Estimate.
  template <typename S, typename Weight, typename Estimate>
  class NaturalAStarQueue : public ShortestFirstQueue<
            S, AStarWeightCompare<S, NaturalLess<Weight>, Estimate>> {
   public:
    using StateId = S;
    using Compare = AStarWeightCompare<StateId, NaturalLess<Weight>, Estimate>;
  
    NaturalAStarQueue(const std::vector<Weight> &distance,
                      const Estimate &estimate)
        : ShortestFirstQueue<StateId, Compare>(
              Compare(distance, less_, estimate)) {}
  
    ~NaturalAStarQueue() = default;
  
   private:
    // This is non-static because the constructor for non-idempotent weights will
    // result in a an error.
    const NaturalLess<Weight> less_{};
  };
  
  // A state equivalence class is a function object that maps from a state ID to
  // an equivalence class (state) ID. The trivial equivalence class maps a state
  // ID to itself.
  template <typename StateId>
  struct TrivialStateEquivClass {
    StateId operator()(StateId s) const { return s; }
  };
  
  // Distance-based pruning queue discipline: Enqueues a state only when its
  // shortest distance (so far), as specified by distance, is less than (as
  // specified by comp) the shortest distance Times() the threshold to any state
  // in the same equivalence class, as specified by the functor class_func. The
  // underlying queue discipline is specified by queue. The ownership of queue is
  // given to this class.
  //
  // This is not a final class.
  template <typename Queue, typename Less, typename ClassFnc>
  class PruneQueue : public QueueBase<typename Queue::StateId> {
   public:
    using StateId = typename Queue::StateId;
    using Weight = typename Less::Weight;
  
    PruneQueue(const std::vector<Weight> &distance, Queue *queue,
               const Less &less, const ClassFnc &class_fnc, Weight threshold)
        : QueueBase<StateId>(OTHER_QUEUE),
          distance_(distance),
          queue_(queue),
          less_(less),
          class_fnc_(class_fnc),
          threshold_(std::move(threshold)) {}
  
    virtual ~PruneQueue() = default;
  
    StateId Head() const override { return queue_->Head(); }
  
    void Enqueue(StateId s) override {
      const auto c = class_fnc_(s);
      if (c >= class_distance_.size()) {
        class_distance_.resize(c + 1, Weight::Zero());
      }
      if (less_(distance_[s], class_distance_[c])) {
        class_distance_[c] = distance_[s];
      }
      // Enqueues only if below threshold limit.
      const auto limit = Times(class_distance_[c], threshold_);
      if (less_(distance_[s], limit)) queue_->Enqueue(s);
    }
  
    void Dequeue() override { queue_->Dequeue(); }
  
    void Update(StateId s) override {
      const auto c = class_fnc_(s);
      if (less_(distance_[s], class_distance_[c])) {
        class_distance_[c] = distance_[s];
      }
      queue_->Update(s);
    }
  
    bool Empty() const override { return queue_->Empty(); }
  
    void Clear() override { queue_->Clear(); }
  
   private:
    const std::vector<Weight> &distance_;  // Shortest distance to state.
    std::unique_ptr<Queue> queue_;
    const Less &less_;                    // Borrowed reference.
    const ClassFnc &class_fnc_;           // Equivalence class functor.
    Weight threshold_;                    // Pruning weight threshold.
    std::vector<Weight> class_distance_;  // Shortest distance to class.
  };
  
  // Pruning queue discipline (see above) using the weight's natural order for the
  // comparison function. The ownership of the queue argument is given to this
  // class.
  template <typename Queue, typename Weight, typename ClassFnc>
  class NaturalPruneQueue final
      : public PruneQueue<Queue, NaturalLess<Weight>, ClassFnc> {
   public:
    using StateId = typename Queue::StateId;
  
    NaturalPruneQueue(const std::vector<Weight> &distance, Queue *queue,
                      const ClassFnc &class_fnc, Weight threshold)
        : PruneQueue<Queue, NaturalLess<Weight>, ClassFnc>(
              distance, queue, NaturalLess<Weight>(), class_fnc, threshold) {}
  
    virtual ~NaturalPruneQueue() = default;
  };
  
  // Filter-based pruning queue discipline: enqueues a state only if allowed by
  // the filter, specified by the state filter functor argument. The underlying
  // queue discipline is specified by the queue argument. The ownership of the
  // queue is given to this class.
  template <typename Queue, typename Filter>
  class FilterQueue : public QueueBase<typename Queue::StateId> {
   public:
    using StateId = typename Queue::StateId;
  
    FilterQueue(Queue *queue, const Filter &filter)
        : QueueBase<StateId>(OTHER_QUEUE), queue_(queue), filter_(filter) {}
  
    virtual ~FilterQueue() = default;
  
    StateId Head() const final { return queue_->Head(); }
  
    // Enqueues only if allowed by state filter.
    void Enqueue(StateId s) final {
      if (filter_(s)) queue_->Enqueue(s);
    }
  
    void Dequeue() final { queue_->Dequeue(); }
  
    void Update(StateId s) final {}
  
    bool Empty() const final { return queue_->Empty(); }
  
    void Clear() final { queue_->Clear(); }
  
   private:
    std::unique_ptr<Queue> queue_;
    const Filter &filter_;
  };
  
  }  // namespace fst
  
  #endif  // FST_QUEUE_H_