Blame view
tools/openfst-1.6.7/src/include/fst/replace.h
54.8 KB
8dcb6dfcb first commit |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 |
// See www.openfst.org for extensive documentation on this weighted // finite-state transducer library. // // Functions and classes for the recursive replacement of FSTs. #ifndef FST_REPLACE_H_ #define FST_REPLACE_H_ #include <set> #include <string> #include <unordered_map> #include <utility> #include <vector> #include <fst/log.h> #include <fst/cache.h> #include <fst/expanded-fst.h> #include <fst/fst-decl.h> // For optional argument declarations. #include <fst/fst.h> #include <fst/matcher.h> #include <fst/replace-util.h> #include <fst/state-table.h> #include <fst/test-properties.h> namespace fst { // Replace state tables have the form: // // template <class Arc, class P> // class ReplaceStateTable { // public: // using Label = typename Arc::Label Label; // using StateId = typename Arc::StateId; // // using PrefixId = P; // using StateTuple = ReplaceStateTuple<StateId, PrefixId>; // using StackPrefix = ReplaceStackPrefix<Label, StateId>; // // // Required constructor. // ReplaceStateTable( // const std::vector<std::pair<Label, const Fst<Arc> *>> &fst_list, // Label root); // // // Required copy constructor that does not copy state. // ReplaceStateTable(const ReplaceStateTable<Arc, PrefixId> &table); // // // Looks up state ID by tuple, adding it if it doesn't exist. // StateId FindState(const StateTuple &tuple); // // // Looks up state tuple by ID. // const StateTuple &Tuple(StateId id) const; // // // Lookus up prefix ID by stack prefix, adding it if it doesn't exist. // PrefixId FindPrefixId(const StackPrefix &stack_prefix); // // // Looks up stack prefix by ID. // const StackPrefix &GetStackPrefix(PrefixId id) const; // }; // Tuple that uniquely defines a state in replace. template <class S, class P> struct ReplaceStateTuple { using StateId = S; using PrefixId = P; ReplaceStateTuple(PrefixId prefix_id = -1, StateId fst_id = kNoStateId, StateId fst_state = kNoStateId) : prefix_id(prefix_id), fst_id(fst_id), fst_state(fst_state) {} PrefixId prefix_id; // Index in prefix table. StateId fst_id; // Current FST being walked. StateId fst_state; // Current state in FST being walked (not to be // confused with the thse StateId of the combined FST). }; // Equality of replace state tuples. template <class StateId, class PrefixId> inline bool operator==(const ReplaceStateTuple<StateId, PrefixId> &x, const ReplaceStateTuple<StateId, PrefixId> &y) { return x.prefix_id == y.prefix_id && x.fst_id == y.fst_id && x.fst_state == y.fst_state; } // Functor returning true for tuples corresponding to states in the root FST. template <class StateId, class PrefixId> class ReplaceRootSelector { public: bool operator()(const ReplaceStateTuple<StateId, PrefixId> &tuple) const { return tuple.prefix_id == 0; } }; // Functor for fingerprinting replace state tuples. template <class StateId, class PrefixId> class ReplaceFingerprint { public: explicit ReplaceFingerprint(const std::vector<uint64> *size_array) : size_array_(size_array) {} uint64 operator()(const ReplaceStateTuple<StateId, PrefixId> &tuple) const { return tuple.prefix_id * size_array_->back() + size_array_->at(tuple.fst_id - 1) + tuple.fst_state; } private: const std::vector<uint64> *size_array_; }; // Useful when the fst_state uniquely define the tuple. template <class StateId, class PrefixId> class ReplaceFstStateFingerprint { public: uint64 operator()(const ReplaceStateTuple<StateId, PrefixId> &tuple) const { return tuple.fst_state; } }; // A generic hash function for replace state tuples. template <typename S, typename P> class ReplaceHash { public: size_t operator()(const ReplaceStateTuple<S, P>& t) const { static constexpr size_t prime0 = 7853; static constexpr size_t prime1 = 7867; return t.prefix_id + t.fst_id * prime0 + t.fst_state * prime1; } }; // Container for stack prefix. template <class Label, class StateId> class ReplaceStackPrefix { public: struct PrefixTuple { PrefixTuple(Label fst_id = kNoLabel, StateId nextstate = kNoStateId) : fst_id(fst_id), nextstate(nextstate) {} Label fst_id; StateId nextstate; }; ReplaceStackPrefix() {} ReplaceStackPrefix(const ReplaceStackPrefix &other) : prefix_(other.prefix_) {} void Push(StateId fst_id, StateId nextstate) { prefix_.push_back(PrefixTuple(fst_id, nextstate)); } void Pop() { prefix_.pop_back(); } const PrefixTuple &Top() const { return prefix_[prefix_.size() - 1]; } size_t Depth() const { return prefix_.size(); } public: std::vector<PrefixTuple> prefix_; }; // Equality stack prefix classes. template <class Label, class StateId> inline bool operator==(const ReplaceStackPrefix<Label, StateId> &x, const ReplaceStackPrefix<Label, StateId> &y) { if (x.prefix_.size() != y.prefix_.size()) return false; for (size_t i = 0; i < x.prefix_.size(); ++i) { if (x.prefix_[i].fst_id != y.prefix_[i].fst_id || x.prefix_[i].nextstate != y.prefix_[i].nextstate) { return false; } } return true; } // Hash function for stack prefix to prefix id. template <class Label, class StateId> class ReplaceStackPrefixHash { public: size_t operator()(const ReplaceStackPrefix<Label, StateId> &prefix) const { size_t sum = 0; for (const auto &pair : prefix.prefix_) { static constexpr size_t prime = 7863; sum += pair.fst_id + pair.nextstate * prime; } return sum; } }; // Replace state tables. // A two-level state table for replace. Warning: calls CountStates to compute // the number of states of each component FST. template <class Arc, class P = ssize_t> class VectorHashReplaceStateTable { public: using Label = typename Arc::Label; using StateId = typename Arc::StateId; using PrefixId = P; using StateTuple = ReplaceStateTuple<StateId, PrefixId>; using StateTable = VectorHashStateTable<ReplaceStateTuple<StateId, PrefixId>, ReplaceRootSelector<StateId, PrefixId>, ReplaceFstStateFingerprint<StateId, PrefixId>, ReplaceFingerprint<StateId, PrefixId>>; using StackPrefix = ReplaceStackPrefix<Label, StateId>; using StackPrefixTable = CompactHashBiTable<PrefixId, StackPrefix, ReplaceStackPrefixHash<Label, StateId>>; VectorHashReplaceStateTable( const std::vector<std::pair<Label, const Fst<Arc> *>> &fst_list, Label root) : root_size_(0) { size_array_.push_back(0); for (const auto &fst_pair : fst_list) { if (fst_pair.first == root) { root_size_ = CountStates(*(fst_pair.second)); size_array_.push_back(size_array_.back()); } else { size_array_.push_back(size_array_.back() + CountStates(*(fst_pair.second))); } } state_table_.reset( new StateTable(new ReplaceRootSelector<StateId, PrefixId>, new ReplaceFstStateFingerprint<StateId, PrefixId>, new ReplaceFingerprint<StateId, PrefixId>(&size_array_), root_size_, root_size_ + size_array_.back())); } VectorHashReplaceStateTable( const VectorHashReplaceStateTable<Arc, PrefixId> &table) : root_size_(table.root_size_), size_array_(table.size_array_), prefix_table_(table.prefix_table_) { state_table_.reset( new StateTable(new ReplaceRootSelector<StateId, PrefixId>, new ReplaceFstStateFingerprint<StateId, PrefixId>, new ReplaceFingerprint<StateId, PrefixId>(&size_array_), root_size_, root_size_ + size_array_.back())); } StateId FindState(const StateTuple &tuple) { return state_table_->FindState(tuple); } const StateTuple &Tuple(StateId id) const { return state_table_->Tuple(id); } PrefixId FindPrefixId(const StackPrefix &prefix) { return prefix_table_.FindId(prefix); } const StackPrefix& GetStackPrefix(PrefixId id) const { return prefix_table_.FindEntry(id); } private: StateId root_size_; std::vector<uint64> size_array_; std::unique_ptr<StateTable> state_table_; StackPrefixTable prefix_table_; }; // Default replace state table. template <class Arc, class P /* = size_t */> class DefaultReplaceStateTable : public CompactHashStateTable<ReplaceStateTuple<typename Arc::StateId, P>, ReplaceHash<typename Arc::StateId, P>> { public: using Label = typename Arc::Label; using StateId = typename Arc::StateId; using PrefixId = P; using StateTuple = ReplaceStateTuple<StateId, PrefixId>; using StateTable = CompactHashStateTable<StateTuple, ReplaceHash<StateId, PrefixId>>; using StackPrefix = ReplaceStackPrefix<Label, StateId>; using StackPrefixTable = CompactHashBiTable<PrefixId, StackPrefix, ReplaceStackPrefixHash<Label, StateId>>; using StateTable::FindState; using StateTable::Tuple; DefaultReplaceStateTable( const std::vector<std::pair<Label, const Fst<Arc> *>> &, Label) {} DefaultReplaceStateTable(const DefaultReplaceStateTable<Arc, PrefixId> &table) : StateTable(), prefix_table_(table.prefix_table_) {} PrefixId FindPrefixId(const StackPrefix &prefix) { return prefix_table_.FindId(prefix); } const StackPrefix &GetStackPrefix(PrefixId id) const { return prefix_table_.FindEntry(id); } private: StackPrefixTable prefix_table_; }; // By default ReplaceFst will copy the input label of the replace arc. // The call_label_type and return_label_type options specify how to manage // the labels of the call arc and the return arc of the replace FST template <class Arc, class StateTable = DefaultReplaceStateTable<Arc>, class CacheStore = DefaultCacheStore<Arc>> struct ReplaceFstOptions : CacheImplOptions<CacheStore> { using Label = typename Arc::Label; // Index of root rule for expansion. Label root; // How to label call arc. ReplaceLabelType call_label_type = REPLACE_LABEL_INPUT; // How to label return arc. ReplaceLabelType return_label_type = REPLACE_LABEL_NEITHER; // Specifies output label to put on call arc; if kNoLabel, use existing label // on call arc. Otherwise, use this field as the output label. Label call_output_label = kNoLabel; // Specifies label to put on return arc. Label return_label = 0; // Take ownership of input FSTs? bool take_ownership = false; // Pointer to optional pre-constructed state table. StateTable *state_table = nullptr; explicit ReplaceFstOptions(const CacheImplOptions<CacheStore> &opts, Label root = kNoLabel) : CacheImplOptions<CacheStore>(opts), root(root) {} explicit ReplaceFstOptions(const CacheOptions &opts, Label root = kNoLabel) : CacheImplOptions<CacheStore>(opts), root(root) {} // FIXME(kbg): There are too many constructors here. Come up with a consistent // position for call_output_label (probably the very end) so that it is // possible to express all the remaining constructors with a single // default-argument constructor. Also move clients off of the "backwards // compatibility" constructor, for good. explicit ReplaceFstOptions(Label root) : root(root) {} explicit ReplaceFstOptions(Label root, ReplaceLabelType call_label_type, ReplaceLabelType return_label_type, Label return_label) : root(root), call_label_type(call_label_type), return_label_type(return_label_type), return_label(return_label) {} explicit ReplaceFstOptions(Label root, ReplaceLabelType call_label_type, ReplaceLabelType return_label_type, Label call_output_label, Label return_label) : root(root), call_label_type(call_label_type), return_label_type(return_label_type), call_output_label(call_output_label), return_label(return_label) {} explicit ReplaceFstOptions(const ReplaceUtilOptions &opts) : ReplaceFstOptions(opts.root, opts.call_label_type, opts.return_label_type, opts.return_label) {} ReplaceFstOptions() : root(kNoLabel) {} // For backwards compatibility. ReplaceFstOptions(int64 root, bool epsilon_replace_arc) : root(root), call_label_type(epsilon_replace_arc ? REPLACE_LABEL_NEITHER : REPLACE_LABEL_INPUT), call_output_label(epsilon_replace_arc ? 0 : kNoLabel) {} }; // Forward declaration. template <class Arc, class StateTable, class CacheStore> class ReplaceFstMatcher; template <class Arc> using FstList = std::vector<std::pair<typename Arc::Label, const Fst<Arc> *>>; // Returns true if label type on arc results in epsilon input label. inline bool EpsilonOnInput(ReplaceLabelType label_type) { return label_type == REPLACE_LABEL_NEITHER || label_type == REPLACE_LABEL_OUTPUT; } // Returns true if label type on arc results in epsilon input label. inline bool EpsilonOnOutput(ReplaceLabelType label_type) { return label_type == REPLACE_LABEL_NEITHER || label_type == REPLACE_LABEL_INPUT; } // Returns true if for either the call or return arc ilabel != olabel. template <class Label> bool ReplaceTransducer(ReplaceLabelType call_label_type, ReplaceLabelType return_label_type, Label call_output_label) { return call_label_type == REPLACE_LABEL_INPUT || call_label_type == REPLACE_LABEL_OUTPUT || (call_label_type == REPLACE_LABEL_BOTH && call_output_label != kNoLabel) || return_label_type == REPLACE_LABEL_INPUT || return_label_type == REPLACE_LABEL_OUTPUT; } template <class Arc> uint64 ReplaceFstProperties(typename Arc::Label root_label, const FstList<Arc> &fst_list, ReplaceLabelType call_label_type, ReplaceLabelType return_label_type, typename Arc::Label call_output_label, bool *sorted_and_non_empty) { using Label = typename Arc::Label; std::vector<uint64> inprops; bool all_ilabel_sorted = true; bool all_olabel_sorted = true; bool all_non_empty = true; // All nonterminals are negative? bool all_negative = true; // All nonterminals are positive and form a dense range containing 1? bool dense_range = true; Label root_fst_idx = 0; for (Label i = 0; i < fst_list.size(); ++i) { const auto label = fst_list[i].first; if (label >= 0) all_negative = false; if (label > fst_list.size() || label <= 0) dense_range = false; if (label == root_label) root_fst_idx = i; const auto *fst = fst_list[i].second; if (fst->Start() == kNoStateId) all_non_empty = false; if (!fst->Properties(kILabelSorted, false)) all_ilabel_sorted = false; if (!fst->Properties(kOLabelSorted, false)) all_olabel_sorted = false; inprops.push_back(fst->Properties(kCopyProperties, false)); } const auto props = ReplaceProperties( inprops, root_fst_idx, EpsilonOnInput(call_label_type), EpsilonOnInput(return_label_type), EpsilonOnOutput(call_label_type), EpsilonOnOutput(return_label_type), ReplaceTransducer(call_label_type, return_label_type, call_output_label), all_non_empty, all_ilabel_sorted, all_olabel_sorted, all_negative || dense_range); const bool sorted = props & (kILabelSorted | kOLabelSorted); *sorted_and_non_empty = all_non_empty && sorted; return props; } namespace internal { // The replace implementation class supports a dynamic expansion of a recursive // transition network represented as label/FST pairs with dynamic replacable // arcs. template <class Arc, class StateTable, class CacheStore> class ReplaceFstImpl : public CacheBaseImpl<typename CacheStore::State, CacheStore> { public: using Label = typename Arc::Label; using StateId = typename Arc::StateId; using Weight = typename Arc::Weight; using State = typename CacheStore::State; using CacheImpl = CacheBaseImpl<State, CacheStore>; using PrefixId = typename StateTable::PrefixId; using StateTuple = ReplaceStateTuple<StateId, PrefixId>; using StackPrefix = ReplaceStackPrefix<Label, StateId>; using NonTerminalHash = std::unordered_map<Label, Label>; using FstImpl<Arc>::SetType; using FstImpl<Arc>::SetProperties; using FstImpl<Arc>::WriteHeader; using FstImpl<Arc>::SetInputSymbols; using FstImpl<Arc>::SetOutputSymbols; using FstImpl<Arc>::InputSymbols; using FstImpl<Arc>::OutputSymbols; using CacheImpl::PushArc; using CacheImpl::HasArcs; using CacheImpl::HasFinal; using CacheImpl::HasStart; using CacheImpl::SetArcs; using CacheImpl::SetFinal; using CacheImpl::SetStart; friend class ReplaceFstMatcher<Arc, StateTable, CacheStore>; ReplaceFstImpl(const FstList<Arc> &fst_list, const ReplaceFstOptions<Arc, StateTable, CacheStore> &opts) : CacheImpl(opts), call_label_type_(opts.call_label_type), return_label_type_(opts.return_label_type), call_output_label_(opts.call_output_label), return_label_(opts.return_label), state_table_(opts.state_table ? opts.state_table : new StateTable(fst_list, opts.root)) { SetType("replace"); // If the label is epsilon, then all replace label options are equivalent, // so we set the label types to NEITHER for simplicity. if (call_output_label_ == 0) call_label_type_ = REPLACE_LABEL_NEITHER; if (return_label_ == 0) return_label_type_ = REPLACE_LABEL_NEITHER; if (!fst_list.empty()) { SetInputSymbols(fst_list[0].second->InputSymbols()); SetOutputSymbols(fst_list[0].second->OutputSymbols()); } fst_array_.push_back(nullptr); for (Label i = 0; i < fst_list.size(); ++i) { const auto label = fst_list[i].first; const auto *fst = fst_list[i].second; nonterminal_hash_[label] = fst_array_.size(); nonterminal_set_.insert(label); fst_array_.emplace_back(opts.take_ownership ? fst : fst->Copy()); if (i) { if (!CompatSymbols(InputSymbols(), fst->InputSymbols())) { FSTERROR() << "ReplaceFstImpl: Input symbols of FST " << i << " do not match input symbols of base FST (0th FST)"; SetProperties(kError, kError); } if (!CompatSymbols(OutputSymbols(), fst->OutputSymbols())) { FSTERROR() << "ReplaceFstImpl: Output symbols of FST " << i << " do not match output symbols of base FST (0th FST)"; SetProperties(kError, kError); } } } const auto nonterminal = nonterminal_hash_[opts.root]; if ((nonterminal == 0) && (fst_array_.size() > 1)) { FSTERROR() << "ReplaceFstImpl: No FST corresponding to root label " << opts.root << " in the input tuple vector"; SetProperties(kError, kError); } root_ = (nonterminal > 0) ? nonterminal : 1; bool all_non_empty_and_sorted = false; SetProperties(ReplaceFstProperties(opts.root, fst_list, call_label_type_, return_label_type_, call_output_label_, &all_non_empty_and_sorted)); // Enables optional caching as long as sorted and all non-empty. always_cache_ = !all_non_empty_and_sorted; VLOG(2) << "ReplaceFstImpl::ReplaceFstImpl: always_cache = " << (always_cache_ ? "true" : "false"); } ReplaceFstImpl(const ReplaceFstImpl &impl) : CacheImpl(impl), call_label_type_(impl.call_label_type_), return_label_type_(impl.return_label_type_), call_output_label_(impl.call_output_label_), return_label_(impl.return_label_), always_cache_(impl.always_cache_), state_table_(new StateTable(*(impl.state_table_))), nonterminal_set_(impl.nonterminal_set_), nonterminal_hash_(impl.nonterminal_hash_), root_(impl.root_) { SetType("replace"); SetProperties(impl.Properties(), kCopyProperties); SetInputSymbols(impl.InputSymbols()); SetOutputSymbols(impl.OutputSymbols()); fst_array_.reserve(impl.fst_array_.size()); fst_array_.emplace_back(nullptr); for (Label i = 1; i < impl.fst_array_.size(); ++i) { fst_array_.emplace_back(impl.fst_array_[i]->Copy(true)); } } // Computes the dependency graph of the replace class and returns // true if the dependencies are cyclic. Cyclic dependencies will result // in an un-expandable FST. bool CyclicDependencies() const { const ReplaceUtilOptions opts(root_); ReplaceUtil<Arc> replace_util(fst_array_, nonterminal_hash_, opts); return replace_util.CyclicDependencies(); } StateId Start() { if (!HasStart()) { if (fst_array_.size() == 1) { SetStart(kNoStateId); return kNoStateId; } else { const auto fst_start = fst_array_[root_]->Start(); if (fst_start == kNoStateId) return kNoStateId; const auto prefix = GetPrefixId(StackPrefix()); const auto start = state_table_->FindState(StateTuple(prefix, root_, fst_start)); SetStart(start); return start; } } else { return CacheImpl::Start(); } } Weight Final(StateId s) { if (HasFinal(s)) return CacheImpl::Final(s); const auto &tuple = state_table_->Tuple(s); auto weight = Weight::Zero(); if (tuple.prefix_id == 0) { const auto fst_state = tuple.fst_state; weight = fst_array_[tuple.fst_id]->Final(fst_state); } if (always_cache_ || HasArcs(s)) SetFinal(s, weight); return weight; } size_t NumArcs(StateId s) { if (HasArcs(s)) { return CacheImpl::NumArcs(s); } else if (always_cache_) { // If always caching, expands and caches state. Expand(s); return CacheImpl::NumArcs(s); } else { // Otherwise computes the number of arcs without expanding. const auto tuple = state_table_->Tuple(s); if (tuple.fst_state == kNoStateId) return 0; auto num_arcs = fst_array_[tuple.fst_id]->NumArcs(tuple.fst_state); if (ComputeFinalArc(tuple, nullptr)) ++num_arcs; return num_arcs; } } // Returns whether a given label is a non-terminal. bool IsNonTerminal(Label label) const { if (label < *nonterminal_set_.begin() || label > *nonterminal_set_.rbegin()) { return false; } else { return nonterminal_hash_.count(label); } // TODO(allauzen): be smarter and take advantage of all_dense or // all_negative. Also use this in ComputeArc. This would require changes to // Replace so that recursing into an empty FST lead to a non co-accessible // state instead of deleting the arc as done currently. The current use // correct, since labels are sorted if all_non_empty is true. } size_t NumInputEpsilons(StateId s) { if (HasArcs(s)) { return CacheImpl::NumInputEpsilons(s); } else if (always_cache_ || !Properties(kILabelSorted)) { // If always caching or if the number of input epsilons is too expensive // to compute without caching (i.e., not ilabel-sorted), then expands and // caches state. Expand(s); return CacheImpl::NumInputEpsilons(s); } else { // Otherwise, computes the number of input epsilons without caching. const auto tuple = state_table_->Tuple(s); if (tuple.fst_state == kNoStateId) return 0; size_t num = 0; if (!EpsilonOnInput(call_label_type_)) { // If EpsilonOnInput(c) is false, all input epsilon arcs // are also input epsilons arcs in the underlying machine. num = fst_array_[tuple.fst_id]->NumInputEpsilons(tuple.fst_state); } else { // Otherwise, one need to consider that all non-terminal arcs // in the underlying machine also become input epsilon arc. ArcIterator<Fst<Arc>> aiter(*fst_array_[tuple.fst_id], tuple.fst_state); for (; !aiter.Done() && ((aiter.Value().ilabel == 0) || IsNonTerminal(aiter.Value().olabel)); aiter.Next()) { ++num; } } if (EpsilonOnInput(return_label_type_) && ComputeFinalArc(tuple, nullptr)) { ++num; } return num; } } size_t NumOutputEpsilons(StateId s) { if (HasArcs(s)) { return CacheImpl::NumOutputEpsilons(s); } else if (always_cache_ || !Properties(kOLabelSorted)) { // If always caching or if the number of output epsilons is too expensive // to compute without caching (i.e., not olabel-sorted), then expands and // caches state. Expand(s); return CacheImpl::NumOutputEpsilons(s); } else { // Otherwise, computes the number of output epsilons without caching. const auto tuple = state_table_->Tuple(s); if (tuple.fst_state == kNoStateId) return 0; size_t num = 0; if (!EpsilonOnOutput(call_label_type_)) { // If EpsilonOnOutput(c) is false, all output epsilon arcs are also // output epsilons arcs in the underlying machine. num = fst_array_[tuple.fst_id]->NumOutputEpsilons(tuple.fst_state); } else { // Otherwise, one need to consider that all non-terminal arcs in the // underlying machine also become output epsilon arc. ArcIterator<Fst<Arc>> aiter(*fst_array_[tuple.fst_id], tuple.fst_state); for (; !aiter.Done() && ((aiter.Value().olabel == 0) || IsNonTerminal(aiter.Value().olabel)); aiter.Next()) { ++num; } } if (EpsilonOnOutput(return_label_type_) && ComputeFinalArc(tuple, nullptr)) { ++num; } return num; } } uint64 Properties() const override { return Properties(kFstProperties); } // Sets error if found, and returns other FST impl properties. uint64 Properties(uint64 mask) const override { if (mask & kError) { for (Label i = 1; i < fst_array_.size(); ++i) { if (fst_array_[i]->Properties(kError, false)) { SetProperties(kError, kError); } } } return FstImpl<Arc>::Properties(mask); } // Returns the base arc iterator, and if arcs have not been computed yet, // extends and recurses for new arcs. void InitArcIterator(StateId s, ArcIteratorData<Arc> *data) { if (!HasArcs(s)) Expand(s); CacheImpl::InitArcIterator(s, data); // TODO(allauzen): Set behaviour of generic iterator. // Warning: ArcIterator<ReplaceFst<A>>::InitCache() relies on current // behaviour. } // Extends current state (walk arcs one level deep). void Expand(StateId s) { const auto tuple = state_table_->Tuple(s); if (tuple.fst_state == kNoStateId) { // Local FST is empty. SetArcs(s); return; } ArcIterator<Fst<Arc>> aiter(*fst_array_[tuple.fst_id], tuple.fst_state); Arc arc; // Creates a final arc when needed. if (ComputeFinalArc(tuple, &arc)) PushArc(s, arc); // Expands all arcs leaving the state. for (; !aiter.Done(); aiter.Next()) { if (ComputeArc(tuple, aiter.Value(), &arc)) PushArc(s, arc); } SetArcs(s); } void Expand(StateId s, const StateTuple &tuple, const ArcIteratorData<Arc> &data) { if (tuple.fst_state == kNoStateId) { // Local FST is empty. SetArcs(s); return; } ArcIterator<Fst<Arc>> aiter(data); Arc arc; // Creates a final arc when needed. if (ComputeFinalArc(tuple, &arc)) AddArc(s, arc); // Expands all arcs leaving the state. for (; !aiter.Done(); aiter.Next()) { if (ComputeArc(tuple, aiter.Value(), &arc)) AddArc(s, arc); } SetArcs(s); } // If acpp is null, only returns true if a final arcp is required, but does // not actually compute it. bool ComputeFinalArc(const StateTuple &tuple, Arc *arcp, uint32 flags = kArcValueFlags) { const auto fst_state = tuple.fst_state; if (fst_state == kNoStateId) return false; // If state is final, pops the stack. if (fst_array_[tuple.fst_id]->Final(fst_state) != Weight::Zero() && tuple.prefix_id) { if (arcp) { arcp->ilabel = (EpsilonOnInput(return_label_type_)) ? 0 : return_label_; arcp->olabel = (EpsilonOnOutput(return_label_type_)) ? 0 : return_label_; if (flags & kArcNextStateValue) { const auto &stack = state_table_->GetStackPrefix(tuple.prefix_id); const auto prefix_id = PopPrefix(stack); const auto &top = stack.Top(); arcp->nextstate = state_table_->FindState( StateTuple(prefix_id, top.fst_id, top.nextstate)); } if (flags & kArcWeightValue) { arcp->weight = fst_array_[tuple.fst_id]->Final(fst_state); } } return true; } else { return false; } } // Computes an arc in the FST corresponding to one in the underlying machine. // Returns false if the underlying arc corresponds to no arc in the resulting // FST. bool ComputeArc(const StateTuple &tuple, const Arc &arc, Arc *arcp, uint32 flags = kArcValueFlags) { if (!EpsilonOnInput(call_label_type_) && (flags == (flags & (kArcILabelValue | kArcWeightValue)))) { *arcp = arc; return true; } if (arc.olabel == 0 || arc.olabel < *nonterminal_set_.begin() || arc.olabel > *nonterminal_set_.rbegin()) { // Expands local FST. const auto nextstate = flags & kArcNextStateValue ? state_table_->FindState( StateTuple(tuple.prefix_id, tuple.fst_id, arc.nextstate)) : kNoStateId; *arcp = Arc(arc.ilabel, arc.olabel, arc.weight, nextstate); } else { // Checks for non-terminal. const auto it = nonterminal_hash_.find(arc.olabel); if (it != nonterminal_hash_.end()) { // Recurses into non-terminal. const auto nonterminal = it->second; const auto nt_prefix = PushPrefix(state_table_->GetStackPrefix(tuple.prefix_id), tuple.fst_id, arc.nextstate); // If the start state is valid, replace; othewise, the arc is implicitly // deleted. const auto nt_start = fst_array_[nonterminal]->Start(); if (nt_start != kNoStateId) { const auto nt_nextstate = flags & kArcNextStateValue ? state_table_->FindState(StateTuple( nt_prefix, nonterminal, nt_start)) : kNoStateId; const auto ilabel = (EpsilonOnInput(call_label_type_)) ? 0 : arc.ilabel; const auto olabel = (EpsilonOnOutput(call_label_type_)) ? 0 : ((call_output_label_ == kNoLabel) ? arc.olabel : call_output_label_); *arcp = Arc(ilabel, olabel, arc.weight, nt_nextstate); } else { return false; } } else { const auto nextstate = flags & kArcNextStateValue ? state_table_->FindState( StateTuple(tuple.prefix_id, tuple.fst_id, arc.nextstate)) : kNoStateId; *arcp = Arc(arc.ilabel, arc.olabel, arc.weight, nextstate); } } return true; } // Returns the arc iterator flags supported by this FST. uint32 ArcIteratorFlags() const { uint32 flags = kArcValueFlags; if (!always_cache_) flags |= kArcNoCache; return flags; } StateTable *GetStateTable() const { return state_table_.get(); } const Fst<Arc> *GetFst(Label fst_id) const { return fst_array_[fst_id].get(); } Label GetFstId(Label nonterminal) const { const auto it = nonterminal_hash_.find(nonterminal); if (it == nonterminal_hash_.end()) { FSTERROR() << "ReplaceFstImpl::GetFstId: Nonterminal not found: " << nonterminal; } return it->second; } // Returns true if label type on call arc results in epsilon input label. bool EpsilonOnCallInput() { return EpsilonOnInput(call_label_type_); } private: // The unique index into stack prefix table. PrefixId GetPrefixId(const StackPrefix &prefix) { return state_table_->FindPrefixId(prefix); } // The prefix ID after a stack pop. PrefixId PopPrefix(StackPrefix prefix) { prefix.Pop(); return GetPrefixId(prefix); } // The prefix ID after a stack push. PrefixId PushPrefix(StackPrefix prefix, Label fst_id, StateId nextstate) { prefix.Push(fst_id, nextstate); return GetPrefixId(prefix); } // Runtime options ReplaceLabelType call_label_type_; // How to label call arc. ReplaceLabelType return_label_type_; // How to label return arc. int64 call_output_label_; // Specifies output label to put on call arc int64 return_label_; // Specifies label to put on return arc. bool always_cache_; // Disable optional caching of arc iterator? // State table. std::unique_ptr<StateTable> state_table_; // Replace components. std::set<Label> nonterminal_set_; NonTerminalHash nonterminal_hash_; std::vector<std::unique_ptr<const Fst<Arc>>> fst_array_; Label root_; }; } // namespace internal // // ReplaceFst supports dynamic replacement of arcs in one FST with another FST. // This replacement is recursive. ReplaceFst can be used to support a variety of // delayed constructions such as recursive // transition networks, union, or closure. It is constructed with an array of // FST(s). One FST represents the root (or topology) machine. The root FST // refers to other FSTs by recursively replacing arcs labeled as non-terminals // with the matching non-terminal FST. Currently the ReplaceFst uses the output // symbols of the arcs to determine whether the arc is a non-terminal arc or // not. A non-terminal can be any label that is not a non-zero terminal label in // the output alphabet. // // Note that the constructor uses a vector of pairs. These correspond to the // tuple of non-terminal Label and corresponding FST. For example to implement // the closure operation we need 2 FSTs. The first root FST is a single // self-loop arc on the start state. // // The ReplaceFst class supports an optionally caching arc iterator. // // The ReplaceFst needs to be built such that it is known to be ilabel- or // olabel-sorted (see usage below). // // Observe that Matcher<Fst<A>> will use the optionally caching arc iterator // when available (the FST is ilabel-sorted and matching on the input, or the // FST is olabel -orted and matching on the output). In order to obtain the // most efficient behaviour, it is recommended to set call_label_type to // REPLACE_LABEL_INPUT or REPLACE_LABEL_BOTH and return_label_type to // REPLACE_LABEL_OUTPUT or REPLACE_LABEL_NEITHER. This means that the call arc // does not have epsilon on the input side and the return arc has epsilon on the // input side) and matching on the input side. // // This class attaches interface to implementation and handles reference // counting, delegating most methods to ImplToFst. template <class A, class T /* = DefaultReplaceStateTable<A> */, class CacheStore /* = DefaultCacheStore<A> */> class ReplaceFst : public ImplToFst<internal::ReplaceFstImpl<A, T, CacheStore>> { public: using Arc = A; using Label = typename Arc::Label; using StateId = typename Arc::StateId; using Weight = typename Arc::Weight; using StateTable = T; using Store = CacheStore; using State = typename CacheStore::State; using Impl = internal::ReplaceFstImpl<Arc, StateTable, CacheStore>; using CacheImpl = internal::CacheBaseImpl<State, CacheStore>; using ImplToFst<Impl>::Properties; friend class ArcIterator<ReplaceFst<Arc, StateTable, CacheStore>>; friend class StateIterator<ReplaceFst<Arc, StateTable, CacheStore>>; friend class ReplaceFstMatcher<Arc, StateTable, CacheStore>; ReplaceFst(const std::vector<std::pair<Label, const Fst<Arc> *>> &fst_array, Label root) : ImplToFst<Impl>(std::make_shared<Impl>( fst_array, ReplaceFstOptions<Arc, StateTable, CacheStore>(root))) {} ReplaceFst(const std::vector<std::pair<Label, const Fst<Arc> *>> &fst_array, const ReplaceFstOptions<Arc, StateTable, CacheStore> &opts) : ImplToFst<Impl>(std::make_shared<Impl>(fst_array, opts)) {} // See Fst<>::Copy() for doc. ReplaceFst(const ReplaceFst<Arc, StateTable, CacheStore> &fst, bool safe = false) : ImplToFst<Impl>(fst, safe) {} // Get a copy of this ReplaceFst. See Fst<>::Copy() for further doc. ReplaceFst<Arc, StateTable, CacheStore> *Copy( bool safe = false) const override { return new ReplaceFst<Arc, StateTable, CacheStore>(*this, safe); } inline void InitStateIterator(StateIteratorData<Arc> *data) const override; void InitArcIterator(StateId s, ArcIteratorData<Arc> *data) const override { GetMutableImpl()->InitArcIterator(s, data); } MatcherBase<Arc> *InitMatcher(MatchType match_type) const override { if ((GetImpl()->ArcIteratorFlags() & kArcNoCache) && ((match_type == MATCH_INPUT && Properties(kILabelSorted, false)) || (match_type == MATCH_OUTPUT && Properties(kOLabelSorted, false)))) { return new ReplaceFstMatcher<Arc, StateTable, CacheStore> (this, match_type); } else { VLOG(2) << "Not using replace matcher"; return nullptr; } } bool CyclicDependencies() const { return GetImpl()->CyclicDependencies(); } const StateTable &GetStateTable() const { return *GetImpl()->GetStateTable(); } const Fst<Arc> &GetFst(Label nonterminal) const { return *GetImpl()->GetFst(GetImpl()->GetFstId(nonterminal)); } private: using ImplToFst<Impl>::GetImpl; using ImplToFst<Impl>::GetMutableImpl; ReplaceFst &operator=(const ReplaceFst &) = delete; }; // Specialization for ReplaceFst. template <class Arc, class StateTable, class CacheStore> class StateIterator<ReplaceFst<Arc, StateTable, CacheStore>> : public CacheStateIterator<ReplaceFst<Arc, StateTable, CacheStore>> { public: explicit StateIterator(const ReplaceFst<Arc, StateTable, CacheStore> &fst) : CacheStateIterator<ReplaceFst<Arc, StateTable, CacheStore>>( fst, fst.GetMutableImpl()) {} }; // Specialization for ReplaceFst, implementing optional caching. It is be used // as follows: // // ReplaceFst<A> replace; // ArcIterator<ReplaceFst<A>> aiter(replace, s); // // Note: ArcIterator< Fst<A>> is always a caching arc iterator. // aiter.SetFlags(kArcNoCache, kArcNoCache); // // Uses the arc iterator, no arc will be cached, no state will be expanded. // // Arc flags can be used to decide which component of the arc need to be // computed. // aiter.SetFlags(kArcILabelValue, kArcValueFlags); // // Wants the ilabel for this arc. // aiter.Value(); // Does not compute the destination state. // aiter.Next(); // aiter.SetFlags(kArcNextStateValue, kArcNextStateValue); // // Wants the ilabel and next state for this arc. // aiter.Value(); // Does compute the destination state and inserts it // // in the replace state table. // // No additional arcs have been cached at this point. template <class Arc, class StateTable, class CacheStore> class ArcIterator<ReplaceFst<Arc, StateTable, CacheStore>> { public: using StateId = typename Arc::StateId; using StateTuple = typename StateTable::StateTuple; ArcIterator(const ReplaceFst<Arc, StateTable, CacheStore> &fst, StateId s) : fst_(fst), s_(s), pos_(0), offset_(0), flags_(kArcValueFlags), arcs_(nullptr), data_flags_(0), final_flags_(0) { cache_data_.ref_count = nullptr; local_data_.ref_count = nullptr; // If FST does not support optional caching, forces caching. if (!(fst_.GetImpl()->ArcIteratorFlags() & kArcNoCache) && !(fst_.GetImpl()->HasArcs(s_))) { fst_.GetMutableImpl()->Expand(s_); } // If state is already cached, use cached arcs array. if (fst_.GetImpl()->HasArcs(s_)) { (fst_.GetImpl()) ->internal::template CacheBaseImpl< typename CacheStore::State, CacheStore>::InitArcIterator(s_, &cache_data_); num_arcs_ = cache_data_.narcs; arcs_ = cache_data_.arcs; // arcs_ is a pointer to the cached arcs. data_flags_ = kArcValueFlags; // All the arc member values are valid. } else { // Otherwise delay decision until Value() is called. tuple_ = fst_.GetImpl()->GetStateTable()->Tuple(s_); if (tuple_.fst_state == kNoStateId) { num_arcs_ = 0; } else { // The decision to cache or not to cache has been defered until Value() // or // SetFlags() is called. However, the arc iterator is set up now to be // ready for non-caching in order to keep the Value() method simple and // efficient. const auto *rfst = fst_.GetImpl()->GetFst(tuple_.fst_id); rfst->InitArcIterator(tuple_.fst_state, &local_data_); // arcs_ is a pointer to the arcs in the underlying machine. arcs_ = local_data_.arcs; // Computes the final arc (but not its destination state) if a final arc // is required. bool has_final_arc = fst_.GetMutableImpl()->ComputeFinalArc( tuple_, &final_arc_, kArcValueFlags & ~kArcNextStateValue); // Sets the arc value flags that hold for final_arc_. final_flags_ = kArcValueFlags & ~kArcNextStateValue; // Computes the number of arcs. num_arcs_ = local_data_.narcs; if (has_final_arc) ++num_arcs_; // Sets the offset between the underlying arc positions and the // positions // in the arc iterator. offset_ = num_arcs_ - local_data_.narcs; // Defers the decision to cache or not until Value() or SetFlags() is // called. data_flags_ = 0; } } } ~ArcIterator() { if (cache_data_.ref_count) --(*cache_data_.ref_count); if (local_data_.ref_count) --(*local_data_.ref_count); } void ExpandAndCache() const { // TODO(allauzen): revisit this. // fst_.GetImpl()->Expand(s_, tuple_, local_data_); // (fst_.GetImpl())->CacheImpl<A>*>::InitArcIterator(s_, // &cache_data_); // fst_.InitArcIterator(s_, &cache_data_); // Expand and cache state. arcs_ = cache_data_.arcs; // arcs_ is a pointer to the cached arcs. data_flags_ = kArcValueFlags; // All the arc member values are valid. offset_ = 0; // No offset. } void Init() { if (flags_ & kArcNoCache) { // If caching is disabled // arcs_ is a pointer to the arcs in the underlying machine. arcs_ = local_data_.arcs; // Sets the arcs value flags that hold for arcs_. data_flags_ = kArcWeightValue; if (!fst_.GetMutableImpl()->EpsilonOnCallInput()) { data_flags_ |= kArcILabelValue; } // Sets the offset between the underlying arc positions and the positions // in the arc iterator. offset_ = num_arcs_ - local_data_.narcs; } else { ExpandAndCache(); } } bool Done() const { return pos_ >= num_arcs_; } const Arc &Value() const { // If data_flags_ is 0, non-caching was not requested. if (!data_flags_) { // TODO(allauzen): Revisit this. if (flags_ & kArcNoCache) { // Should never happen. FSTERROR() << "ReplaceFst: Inconsistent arc iterator flags"; } ExpandAndCache(); } if (pos_ - offset_ >= 0) { // The requested arc is not the final arc. const auto &arc = arcs_[pos_ - offset_]; if ((data_flags_ & flags_) == (flags_ & kArcValueFlags)) { // If the value flags match the recquired value flags then returns the // arc. return arc; } else { // Otherwise, compute the corresponding arc on-the-fly. fst_.GetMutableImpl()->ComputeArc(tuple_, arc, &arc_, flags_ & kArcValueFlags); return arc_; } } else { // The requested arc is the final arc. if ((final_flags_ & flags_) != (flags_ & kArcValueFlags)) { // If the arc value flags that hold for the final arc do not match the // requested value flags, then // final_arc_ needs to be updated. fst_.GetMutableImpl()->ComputeFinalArc(tuple_, &final_arc_, flags_ & kArcValueFlags); final_flags_ = flags_ & kArcValueFlags; } return final_arc_; } } void Next() { ++pos_; } size_t Position() const { return pos_; } void Reset() { pos_ = 0; } void Seek(size_t pos) { pos_ = pos; } uint32 Flags() const { return flags_; } void SetFlags(uint32 flags, uint32 mask) { // Updates the flags taking into account what flags are supported // by the FST. flags_ &= ~mask; flags_ |= (flags & fst_.GetImpl()->ArcIteratorFlags()); // If non-caching is not requested (and caching has not already been // performed), then flush data_flags_ to request caching during the next // call to Value(). if (!(flags_ & kArcNoCache) && data_flags_ != kArcValueFlags) { if (!fst_.GetImpl()->HasArcs(s_)) data_flags_ = 0; } // If data_flags_ has been flushed but non-caching is requested before // calling Value(), then set up the iterator for non-caching. if ((flags & kArcNoCache) && (!data_flags_)) Init(); } private: const ReplaceFst<Arc, StateTable, CacheStore> &fst_; // Reference to the FST. StateId s_; // State in the FST. mutable StateTuple tuple_; // Tuple corresponding to state_. ssize_t pos_; // Current position. mutable ssize_t offset_; // Offset between position in iterator and in arcs_. ssize_t num_arcs_; // Number of arcs at state_. uint32 flags_; // Behavorial flags for the arc iterator mutable Arc arc_; // Memory to temporarily store computed arcs. mutable ArcIteratorData<Arc> cache_data_; // Arc iterator data in cache. mutable ArcIteratorData<Arc> local_data_; // Arc iterator data in local FST. mutable const Arc *arcs_; // Array of arcs. mutable uint32 data_flags_; // Arc value flags valid for data in arcs_. mutable Arc final_arc_; // Final arc (when required). mutable uint32 final_flags_; // Arc value flags valid for final_arc_. ArcIterator(const ArcIterator &) = delete; ArcIterator &operator=(const ArcIterator &) = delete; }; template <class Arc, class StateTable, class CacheStore> class ReplaceFstMatcher : public MatcherBase<Arc> { public: using Label = typename Arc::Label; using StateId = typename Arc::StateId; using Weight = typename Arc::Weight; using FST = ReplaceFst<Arc, StateTable, CacheStore>; using LocalMatcher = MultiEpsMatcher<Matcher<Fst<Arc>>>; using StateTuple = typename StateTable::StateTuple; // This makes a copy of the FST. ReplaceFstMatcher(const ReplaceFst<Arc, StateTable, CacheStore> &fst, MatchType match_type) : owned_fst_(fst.Copy()), fst_(*owned_fst_), impl_(fst_.GetMutableImpl()), s_(fst::kNoStateId), match_type_(match_type), current_loop_(false), final_arc_(false), loop_(kNoLabel, 0, Weight::One(), kNoStateId) { if (match_type_ == fst::MATCH_OUTPUT) { std::swap(loop_.ilabel, loop_.olabel); } InitMatchers(); } // This doesn't copy the FST. ReplaceFstMatcher(const ReplaceFst<Arc, StateTable, CacheStore> *fst, MatchType match_type) : fst_(*fst), impl_(fst_.GetMutableImpl()), s_(fst::kNoStateId), match_type_(match_type), current_loop_(false), final_arc_(false), loop_(kNoLabel, 0, Weight::One(), kNoStateId) { if (match_type_ == fst::MATCH_OUTPUT) { std::swap(loop_.ilabel, loop_.olabel); } InitMatchers(); } // This makes a copy of the FST. ReplaceFstMatcher( const ReplaceFstMatcher<Arc, StateTable, CacheStore> &matcher, bool safe = false) : owned_fst_(matcher.fst_.Copy(safe)), fst_(*owned_fst_), impl_(fst_.GetMutableImpl()), s_(fst::kNoStateId), match_type_(matcher.match_type_), current_loop_(false), final_arc_(false), loop_(fst::kNoLabel, 0, Weight::One(), fst::kNoStateId) { if (match_type_ == fst::MATCH_OUTPUT) { std::swap(loop_.ilabel, loop_.olabel); } InitMatchers(); } // Creates a local matcher for each component FST in the RTN. LocalMatcher is // a multi-epsilon wrapper matcher. MultiEpsilonMatcher is used to match each // non-terminal arc, since these non-terminal // turn into epsilons on recursion. void InitMatchers() { const auto &fst_array = impl_->fst_array_; matcher_.resize(fst_array.size()); for (Label i = 0; i < fst_array.size(); ++i) { if (fst_array[i]) { matcher_[i].reset( new LocalMatcher(*fst_array[i], match_type_, kMultiEpsList)); auto it = impl_->nonterminal_set_.begin(); for (; it != impl_->nonterminal_set_.end(); ++it) { matcher_[i]->AddMultiEpsLabel(*it); } } } } ReplaceFstMatcher<Arc, StateTable, CacheStore> *Copy( bool safe = false) const override { return new ReplaceFstMatcher<Arc, StateTable, CacheStore>(*this, safe); } MatchType Type(bool test) const override { if (match_type_ == MATCH_NONE) return match_type_; const auto true_prop = match_type_ == MATCH_INPUT ? kILabelSorted : kOLabelSorted; const auto false_prop = match_type_ == MATCH_INPUT ? kNotILabelSorted : kNotOLabelSorted; const auto props = fst_.Properties(true_prop | false_prop, test); if (props & true_prop) { return match_type_; } else if (props & false_prop) { return MATCH_NONE; } else { return MATCH_UNKNOWN; } } const Fst<Arc> &GetFst() const override { return fst_; } uint64 Properties(uint64 props) const override { return props; } // Sets the state from which our matching happens. void SetState(StateId s) final { if (s_ == s) return; s_ = s; tuple_ = impl_->GetStateTable()->Tuple(s_); if (tuple_.fst_state == kNoStateId) { done_ = true; return; } // Gets current matcher, used for non-epsilon matching. current_matcher_ = matcher_[tuple_.fst_id].get(); current_matcher_->SetState(tuple_.fst_state); loop_.nextstate = s_; final_arc_ = false; } // Searches for label from previous set state. If label == 0, first // hallucinate an epsilon loop; otherwise use the underlying matcher to // search for the label or epsilons. Note since the ReplaceFst recursion // on non-terminal arcs causes epsilon transitions to be created we use // MultiEpsilonMatcher to search for possible matches of non-terminals. If the // component FST // reaches a final state we also need to add the exiting final arc. bool Find(Label label) final { bool found = false; label_ = label; if (label_ == 0 || label_ == kNoLabel) { // Computes loop directly, avoiding Replace::ComputeArc. if (label_ == 0) { current_loop_ = true; found = true; } // Searches for matching multi-epsilons. final_arc_ = impl_->ComputeFinalArc(tuple_, nullptr); found = current_matcher_->Find(kNoLabel) || final_arc_ || found; } else { // Searches on a sub machine directly using sub machine matcher. found = current_matcher_->Find(label_); } return found; } bool Done() const final { return !current_loop_ && !final_arc_ && current_matcher_->Done(); } const Arc &Value() const final { if (current_loop_) return loop_; if (final_arc_) { impl_->ComputeFinalArc(tuple_, &arc_); return arc_; } const auto &component_arc = current_matcher_->Value(); impl_->ComputeArc(tuple_, component_arc, &arc_); return arc_; } void Next() final { if (current_loop_) { current_loop_ = false; return; } if (final_arc_) { final_arc_ = false; return; } current_matcher_->Next(); } ssize_t Priority(StateId s) final { return fst_.NumArcs(s); } private: std::unique_ptr<const ReplaceFst<Arc, StateTable, CacheStore>> owned_fst_; const ReplaceFst<Arc, StateTable, CacheStore> &fst_; internal::ReplaceFstImpl<Arc, StateTable, CacheStore> *impl_; LocalMatcher *current_matcher_; std::vector<std::unique_ptr<LocalMatcher>> matcher_; StateId s_; // Current state. Label label_; // Current label. MatchType match_type_; // Supplied by caller. mutable bool done_; mutable bool current_loop_; // Current arc is the implicit loop. mutable bool final_arc_; // Current arc for exiting recursion. mutable StateTuple tuple_; // Tuple corresponding to state_. mutable Arc arc_; Arc loop_; ReplaceFstMatcher &operator=(const ReplaceFstMatcher &) = delete; }; template <class Arc, class StateTable, class CacheStore> inline void ReplaceFst<Arc, StateTable, CacheStore>::InitStateIterator( StateIteratorData<Arc> *data) const { data->base = new StateIterator<ReplaceFst<Arc, StateTable, CacheStore>>(*this); } using StdReplaceFst = ReplaceFst<StdArc>; // Recursively replaces arcs in the root FSTs with other FSTs. // This version writes the result of replacement to an output MutableFst. // // Replace supports replacement of arcs in one Fst with another FST. This // replacement is recursive. Replace takes an array of FST(s). One FST // represents the root (or topology) machine. The root FST refers to other FSTs // by recursively replacing arcs labeled as non-terminals with the matching // non-terminal FST. Currently Replace uses the output symbols of the arcs to // determine whether the arc is a non-terminal arc or not. A non-terminal can be // any label that is not a non-zero terminal label in the output alphabet. // // Note that input argument is a vector of pairs. These correspond to the tuple // of non-terminal Label and corresponding FST. template <class Arc> void Replace(const std::vector<std::pair<typename Arc::Label, const Fst<Arc> *>> &ifst_array, MutableFst<Arc> *ofst, ReplaceFstOptions<Arc> opts = ReplaceFstOptions<Arc>()) { opts.gc = true; opts.gc_limit = 0; // Caches only the last state for fastest copy. *ofst = ReplaceFst<Arc>(ifst_array, opts); } template <class Arc> void Replace(const std::vector<std::pair<typename Arc::Label, const Fst<Arc> *>> &ifst_array, MutableFst<Arc> *ofst, const ReplaceUtilOptions &opts) { Replace(ifst_array, ofst, ReplaceFstOptions<Arc>(opts)); } // For backwards compatibility. template <class Arc> void Replace(const std::vector<std::pair<typename Arc::Label, const Fst<Arc> *>> &ifst_array, MutableFst<Arc> *ofst, typename Arc::Label root, bool epsilon_on_replace) { Replace(ifst_array, ofst, ReplaceFstOptions<Arc>(root, epsilon_on_replace)); } template <class Arc> void Replace(const std::vector<std::pair<typename Arc::Label, const Fst<Arc> *>> &ifst_array, MutableFst<Arc> *ofst, typename Arc::Label root) { Replace(ifst_array, ofst, ReplaceFstOptions<Arc>(root)); } } // namespace fst #endif // FST_REPLACE_H_ |