Blame view

tools/openfst-1.6.7/src/include/fst/test-properties.h 9.22 KB
8dcb6dfcb   Yannick Estève   first commit
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
  // See www.openfst.org for extensive documentation on this weighted
  // finite-state transducer library.
  //
  // Functions to manipulate and test property bits.
  
  #ifndef FST_TEST_PROPERTIES_H_
  #define FST_TEST_PROPERTIES_H_
  
  #include <unordered_set>
  
  #include <fst/flags.h>
  #include <fst/log.h>
  
  #include <fst/connect.h>
  #include <fst/dfs-visit.h>
  
  
  DECLARE_bool(fst_verify_properties);
  
  namespace fst {
  // namespace internal {
  
  // For a binary property, the bit is always returned set. For a trinary (i.e.,
  // two-bit) property, both bits are returned set iff either corresponding input
  // bit is set.
  inline uint64 KnownProperties(uint64 props) {
    return kBinaryProperties | (props & kTrinaryProperties) |
           ((props & kPosTrinaryProperties) << 1) |
           ((props & kNegTrinaryProperties) >> 1);
  }
  
  // Tests compatibility between two sets of properties.
  inline bool CompatProperties(uint64 props1, uint64 props2) {
    const auto known_props1 = KnownProperties(props1);
    const auto known_props2 = KnownProperties(props2);
    const auto known_props = known_props1 & known_props2;
    const auto incompat_props = (props1 & known_props) ^ (props2 & known_props);
    if (incompat_props) {
      uint64 prop = 1;
      for (int i = 0; i < 64; ++i, prop <<= 1) {
        if (prop & incompat_props) {
          LOG(ERROR) << "CompatProperties: Mismatch: " << PropertyNames[i]
                     << ": props1 = " << (props1 & prop ? "true" : "false")
                     << ", props2 = " << (props2 & prop ? "true" : "false");
        }
      }
      return false;
    } else {
      return true;
    }
  }
  
  // Computes FST property values defined in properties.h. The value of each
  // property indicated in the mask will be determined and returned (these will
  // never be unknown here). In the course of determining the properties
  // specifically requested in the mask, certain other properties may be
  // determined (those with little additional expense) and their values will be
  // returned as well. The complete set of known properties (whether true or
  // false) determined by this operation will be assigned to the the value pointed
  // to by KNOWN. If 'use_stored' is true, pre-computed FST properties may be used
  // when possible. 'mask & required_mask' is used to determine whether the stored
  // propertoes can be used. This routine is seldom called directly; instead it is
  // used to implement fst.Properties(mask, true).
  template <class Arc>
  uint64 ComputeProperties(const Fst<Arc> &fst, uint64 mask, uint64 *known,
                           bool use_stored) {
    using Label = typename Arc::Label;
    using StateId = typename Arc::StateId;
    using Weight = typename Arc::Weight;
    const auto fst_props = fst.Properties(kFstProperties, false);  // FST-stored.
    // Check stored FST properties first if allowed.
    if (use_stored) {
      const auto known_props = KnownProperties(fst_props);
      // If FST contains required info, return it.
      if ((known_props & mask) == mask) {
        if (known) *known = known_props;
        return fst_props;
      }
    }
    // Computes (trinary) properties explicitly.
    // Initialize with binary properties (already known).
    uint64 comp_props = fst_props & kBinaryProperties;
    // Computes these trinary properties with a DFS. We compute only those that
    // need a DFS here, since we otherwise would like to avoid a DFS since its
    // stack could grow large.
    uint64 dfs_props = kCyclic | kAcyclic | kInitialCyclic | kInitialAcyclic |
                       kAccessible | kNotAccessible | kCoAccessible |
                       kNotCoAccessible;
    std::vector<StateId> scc;
    if (mask & (dfs_props | kWeightedCycles | kUnweightedCycles)) {
      SccVisitor<Arc> scc_visitor(&scc, nullptr, nullptr, &comp_props);
      DfsVisit(fst, &scc_visitor);
    }
    // Computes any remaining trinary properties via a state and arcs iterations
    if (mask & ~(kBinaryProperties | dfs_props)) {
      comp_props |= kAcceptor | kNoEpsilons | kNoIEpsilons | kNoOEpsilons |
                    kILabelSorted | kOLabelSorted | kUnweighted | kTopSorted |
                    kString;
      if (mask & (kIDeterministic | kNonIDeterministic)) {
        comp_props |= kIDeterministic;
      }
      if (mask & (kODeterministic | kNonODeterministic)) {
        comp_props |= kODeterministic;
      }
      if (mask & (dfs_props | kWeightedCycles | kUnweightedCycles)) {
        comp_props |= kUnweightedCycles;
      }
      std::unique_ptr<std::unordered_set<Label>> ilabels;
      std::unique_ptr<std::unordered_set<Label>> olabels;
      StateId nfinal = 0;
      for (StateIterator<Fst<Arc>> siter(fst); !siter.Done(); siter.Next()) {
        StateId s = siter.Value();
        Arc prev_arc;
        // Creates these only if we need to.
        if (mask & (kIDeterministic | kNonIDeterministic)) {
          ilabels.reset(new std::unordered_set<Label>());
        }
        if (mask & (kODeterministic | kNonODeterministic)) {
          olabels.reset(new std::unordered_set<Label>());
        }
        bool first_arc = true;
        for (ArcIterator<Fst<Arc>> aiter(fst, s); !aiter.Done(); aiter.Next()) {
          const auto &arc = aiter.Value();
          if (ilabels && ilabels->find(arc.ilabel) != ilabels->end()) {
            comp_props |= kNonIDeterministic;
            comp_props &= ~kIDeterministic;
          }
          if (olabels && olabels->find(arc.olabel) != olabels->end()) {
            comp_props |= kNonODeterministic;
            comp_props &= ~kODeterministic;
          }
          if (arc.ilabel != arc.olabel) {
            comp_props |= kNotAcceptor;
            comp_props &= ~kAcceptor;
          }
          if (arc.ilabel == 0 && arc.olabel == 0) {
            comp_props |= kEpsilons;
            comp_props &= ~kNoEpsilons;
          }
          if (arc.ilabel == 0) {
            comp_props |= kIEpsilons;
            comp_props &= ~kNoIEpsilons;
          }
          if (arc.olabel == 0) {
            comp_props |= kOEpsilons;
            comp_props &= ~kNoOEpsilons;
          }
          if (!first_arc) {
            if (arc.ilabel < prev_arc.ilabel) {
              comp_props |= kNotILabelSorted;
              comp_props &= ~kILabelSorted;
            }
            if (arc.olabel < prev_arc.olabel) {
              comp_props |= kNotOLabelSorted;
              comp_props &= ~kOLabelSorted;
            }
          }
          if (arc.weight != Weight::One() && arc.weight != Weight::Zero()) {
            comp_props |= kWeighted;
            comp_props &= ~kUnweighted;
            if ((comp_props & kUnweightedCycles) &&
                scc[s] == scc[arc.nextstate]) {
              comp_props |= kWeightedCycles;
              comp_props &= ~kUnweightedCycles;
            }
          }
          if (arc.nextstate <= s) {
            comp_props |= kNotTopSorted;
            comp_props &= ~kTopSorted;
          }
          if (arc.nextstate != s + 1) {
            comp_props |= kNotString;
            comp_props &= ~kString;
          }
          prev_arc = arc;
          first_arc = false;
          if (ilabels) ilabels->insert(arc.ilabel);
          if (olabels) olabels->insert(arc.olabel);
        }
  
        if (nfinal > 0) {  // Final state not last.
          comp_props |= kNotString;
          comp_props &= ~kString;
        }
        const auto final_weight = fst.Final(s);
        if (final_weight != Weight::Zero()) {  // Final state.
          if (final_weight != Weight::One()) {
            comp_props |= kWeighted;
            comp_props &= ~kUnweighted;
          }
          ++nfinal;
        } else {  // Non-final state.
          if (fst.NumArcs(s) != 1) {
            comp_props |= kNotString;
            comp_props &= ~kString;
          }
        }
      }
      if (fst.Start() != kNoStateId && fst.Start() != 0) {
        comp_props |= kNotString;
        comp_props &= ~kString;
      }
    }
    if (known) *known = KnownProperties(comp_props);
    return comp_props;
  }
  
  // This is a wrapper around ComputeProperties that will cause a fatal error if
  // the stored properties and the computed properties are incompatible when
  // FLAGS_fst_verify_properties is true. This routine is seldom called directly;
  // instead it is used to implement fst.Properties(mask, true).
  template <class Arc>
  uint64 TestProperties(const Fst<Arc> &fst, uint64 mask, uint64 *known) {
    if (FLAGS_fst_verify_properties) {
      const auto stored_props = fst.Properties(kFstProperties, false);
      const auto computed_props = ComputeProperties(fst, mask, known, false);
      if (!CompatProperties(stored_props, computed_props)) {
        FSTERROR() << "TestProperties: stored FST properties incorrect"
                   << " (stored: props1, computed: props2)";
      }
      return computed_props;
    } else {
      return ComputeProperties(fst, mask, known, true);
    }
  }
  
  // If all the properties of 'fst' corresponding to 'check_mask' are known,
  // returns the stored properties. Otherwise, the properties corresponding to
  // both 'check_mask' and 'test_mask' are computed. This is used to check for
  // newly-added properties that might not be set in old binary files.
  template <class Arc>
  uint64 CheckProperties(const Fst<Arc> &fst, uint64 check_mask,
                         uint64 test_mask) {
    auto props = fst.Properties(kFstProperties, false);
    if (FLAGS_fst_verify_properties) {
      props = TestProperties(fst, check_mask | test_mask, nullptr);
    } else if ((KnownProperties(props) & check_mask) != check_mask) {
      props = ComputeProperties(fst, check_mask | test_mask, nullptr, false);
    }
    return props & (check_mask | test_mask);
  }
  
  //}  // namespace internal
  }  // namespace fst
  
  #endif  // FST_TEST_PROPERTIES_H_