Blame view
tools/openfst-1.6.7/src/include/fst/union.h
5.03 KB
8dcb6dfcb first commit |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 |
// See www.openfst.org for extensive documentation on this weighted // finite-state transducer library. // // Functions and classes to compute the union of two FSTs. #ifndef FST_UNION_H_ #define FST_UNION_H_ #include <algorithm> #include <vector> #include <fst/mutable-fst.h> #include <fst/rational.h> namespace fst { // Computes the union (sum) of two FSTs. This version writes the union to an // output MutableFst. If A transduces string x to y with weight a and B // transduces string w to v with weight b, then their union transduces x to y // with weight a and w to v with weight b. // // Complexity: // // Time: (V_2 + E_2) // Space: O(V_2 + E_2) // // where Vi is the number of states, and Ei is the number of arcs, in the ith // FST. template <class Arc> void Union(MutableFst<Arc> *fst1, const Fst<Arc> &fst2) { using Label = typename Arc::Label; using StateId = typename Arc::StateId; using Weight = typename Arc::Weight; // Checks for symbol table compatibility. if (!CompatSymbols(fst1->InputSymbols(), fst2.InputSymbols()) || !CompatSymbols(fst1->OutputSymbols(), fst2.OutputSymbols())) { FSTERROR() << "Union: Input/output symbol tables of 1st argument " << "do not match input/output symbol tables of 2nd argument"; fst1->SetProperties(kError, kError); return; } const auto numstates1 = fst1->NumStates(); const bool initial_acyclic1 = fst1->Properties(kInitialAcyclic, true); const auto props1 = fst1->Properties(kFstProperties, false); const auto props2 = fst2.Properties(kFstProperties, false); const auto start2 = fst2.Start(); if (start2 == kNoStateId) { if (props2 & kError) fst1->SetProperties(kError, kError); return; } if (fst2.Properties(kExpanded, false)) { fst1->ReserveStates(numstates1 + CountStates(fst2) + (initial_acyclic1 ? 0 : 1)); } for (StateIterator<Fst<Arc>> siter(fst2); !siter.Done(); siter.Next()) { const auto s1 = fst1->AddState(); const auto s2 = siter.Value(); fst1->SetFinal(s1, fst2.Final(s2)); fst1->ReserveArcs(s1, fst2.NumArcs(s2)); for (ArcIterator<Fst<Arc>> aiter(fst2, s2); !aiter.Done(); aiter.Next()) { auto arc = aiter.Value(); // Copy intended. arc.nextstate += numstates1; fst1->AddArc(s1, arc); } } const auto start1 = fst1->Start(); if (start1 == kNoStateId) { fst1->SetStart(start2); fst1->SetProperties(props2, kCopyProperties); return; } if (initial_acyclic1) { fst1->AddArc(start1, Arc(0, 0, Weight::One(), start2 + numstates1)); } else { const auto nstart1 = fst1->AddState(); fst1->SetStart(nstart1); fst1->AddArc(nstart1, Arc(0, 0, Weight::One(), start1)); fst1->AddArc(nstart1, Arc(0, 0, Weight::One(), start2 + numstates1)); } fst1->SetProperties(UnionProperties(props1, props2), kFstProperties); } // Computes the union of two FSTs, modifying the RationalFst argument. template <class Arc> void Union(RationalFst<Arc> *fst1, const Fst<Arc> &fst2) { fst1->GetMutableImpl()->AddUnion(fst2); } using UnionFstOptions = RationalFstOptions; // Computes the union (sum) of two FSTs. This version is a delayed FST. If A // transduces string x to y with weight a and B transduces string w to v with // weight b, then their union transduces x to y with weight a and w to v with // weight b. // // Complexity: // // Time: O(v_1 + e_1 + v_2 + e_2) // Space: O(v_1 + v_2) // // where vi is the number of states visited, and ei is the number of arcs // visited, in the ith FST. Constant time and space to visit an input state or // arc is assumed and exclusive of caching. template <class A> class UnionFst : public RationalFst<A> { public: using Arc = A; using StateId = typename Arc::StateId; using Weight = typename Arc::Weight; UnionFst(const Fst<Arc> &fst1, const Fst<Arc> &fst2) { GetMutableImpl()->InitUnion(fst1, fst2); } UnionFst(const Fst<Arc> &fst1, const Fst<Arc> &fst2, const UnionFstOptions &opts) : RationalFst<Arc>(opts) { GetMutableImpl()->InitUnion(fst1, fst2); } // See Fst<>::Copy() for doc. UnionFst(const UnionFst<Arc> &fst, bool safe = false) : RationalFst<Arc>(fst, safe) {} // Gets a copy of this UnionFst. See Fst<>::Copy() for further doc. UnionFst<Arc> *Copy(bool safe = false) const override { return new UnionFst<Arc>(*this, safe); } private: using ImplToFst<internal::RationalFstImpl<Arc>>::GetImpl; using ImplToFst<internal::RationalFstImpl<Arc>>::GetMutableImpl; }; // Specialization for UnionFst. template <class Arc> class StateIterator<UnionFst<Arc>> : public StateIterator<RationalFst<Arc>> { public: explicit StateIterator(const UnionFst<Arc> &fst) : StateIterator<RationalFst<Arc>>(fst) {} }; // Specialization for UnionFst. template <class Arc> class ArcIterator<UnionFst<Arc>> : public ArcIterator<RationalFst<Arc>> { public: using StateId = typename Arc::StateId; ArcIterator(const UnionFst<Arc> &fst, StateId s) : ArcIterator<RationalFst<Arc>>(fst, s) {} }; using StdUnionFst = UnionFst<StdArc>; } // namespace fst #endif // FST_UNION_H_ |