Blame view

tools/openfst-1.6.7/src/test/fst_test.h 8.45 KB
8dcb6dfcb   Yannick Estève   first commit
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
  // See www.openfst.org for extensive documentation on this weighted
  // finite-state transducer library.
  //
  // Regression test for FST classes.
  
  #ifndef FST_TEST_FST_TEST_H_
  #define FST_TEST_FST_TEST_H_
  
  #include <fst/equal.h>
  #include <fstream>
  #include <fst/matcher.h>
  #include <fst/vector-fst.h>
  #include <fst/verify.h>
  
  DECLARE_string(tmpdir);
  
  namespace fst {
  
  // This tests an Fst F that is assumed to have a copy method from an
  // arbitrary Fst. Some test functions make further assumptions mostly
  // obvious from their name. These tests are written as member temple
  // functions that take a test fst as its argument so that different
  // Fsts in the interface hierarchy can be tested separately and so
  // that we can instantiate only those tests that make sense for a
  // particular Fst.
  template <class F>
  class FstTester {
   public:
    typedef typename F::Arc Arc;
    typedef typename Arc::StateId StateId;
    typedef typename Arc::Weight Weight;
    typedef typename Arc::Label Label;
  
    FstTester() {
      VectorFst<Arc> vfst;
      InitFst(&vfst, 128);
      testfst_ = new F(vfst);
    }
  
    explicit FstTester(F *testfst) : testfst_(testfst) {}
  
    ~FstTester() { delete testfst_; }
  
    // This verifies the contents described in InitFst() using
    // methods defined in a generic Fst.
    template <class G>
    void TestBase(const G &fst) const {
      CHECK(Verify(fst));
      CHECK_EQ(fst.Start(), 0);
      StateId ns = 0;
      StateIterator<G> siter(fst);
      Matcher<G> matcher(fst, MATCH_INPUT);
      MatchType match_type = matcher.Type(true);
      for (; !siter.Done(); siter.Next()) {
      }
      for (siter.Reset(); !siter.Done(); siter.Next()) {
        StateId s = siter.Value();
        matcher.SetState(s);
        CHECK_EQ(fst.Final(s), NthWeight(s));
        size_t na = 0;
        ArcIterator<G> aiter(fst, s);
        for (; !aiter.Done(); aiter.Next()) {
        }
        for (aiter.Reset(); !aiter.Done(); aiter.Next()) {
          ++na;
          const Arc &arc = aiter.Value();
          CHECK_EQ(arc.ilabel, na);
          CHECK_EQ(arc.olabel, 0);
          CHECK_EQ(arc.weight, NthWeight(na));
          CHECK_EQ(arc.nextstate, s);
          if (match_type == MATCH_INPUT) {
            CHECK(matcher.Find(arc.ilabel));
            CHECK_EQ(matcher.Value().ilabel, arc.ilabel);
          }
        }
        CHECK_EQ(na, s);
        CHECK_EQ(na, aiter.Position());
        CHECK_EQ(fst.NumArcs(s), s);
        CHECK_EQ(fst.NumInputEpsilons(s), 0);
        CHECK_EQ(fst.NumOutputEpsilons(s), s);
        CHECK(!matcher.Find(s + 1));     // out-of-range
        CHECK(!matcher.Find(kNoLabel));  // no explicit epsilons
        CHECK(matcher.Find(0));
        CHECK_EQ(matcher.Value().ilabel, kNoLabel);  // implicit epsilon loop
        ++ns;
      }
      CHECK(fst.Properties(kNotAcceptor, true));
      CHECK(fst.Properties(kOEpsilons, true));
    }
  
    void TestBase() const { TestBase(*testfst_); }
  
    // This verifies methods specfic to an ExpandedFst.
    template <class G>
    void TestExpanded(const G &fst) const {
      StateId ns = 0;
      for (StateIterator<G> siter(fst); !siter.Done(); siter.Next()) {
        ++ns;
      }
      CHECK_EQ(fst.NumStates(), ns);
      CHECK(fst.Properties(kExpanded, false));
    }
  
    void TestExpanded() const { TestExpanded(*testfst_); }
  
    // This verifies methods specific to a MutableFst.
    template <class G>
    void TestMutable(G *fst) const {
      for (StateIterator<G> siter(*fst); !siter.Done(); siter.Next()) {
        StateId s = siter.Value();
        size_t na = 0;
        size_t ni = fst->NumInputEpsilons(s);
        MutableArcIterator<G> aiter(fst, s);
        for (; !aiter.Done(); aiter.Next()) {
        }
        for (aiter.Reset(); !aiter.Done(); aiter.Next()) {
          ++na;
          Arc arc = aiter.Value();
          arc.ilabel = 0;
          aiter.SetValue(arc);
          arc = aiter.Value();
          CHECK_EQ(arc.ilabel, 0);
          CHECK_EQ(fst->NumInputEpsilons(s), ni + 1);
          arc.ilabel = na;
          aiter.SetValue(arc);
          CHECK_EQ(fst->NumInputEpsilons(s), ni);
        }
      }
  
      G *cfst1 = fst->Copy();
      cfst1->DeleteStates();
      CHECK_EQ(cfst1->NumStates(), 0);
      delete cfst1;
  
      G *cfst2 = fst->Copy();
      for (StateIterator<G> siter(*cfst2); !siter.Done(); siter.Next()) {
        StateId s = siter.Value();
        cfst2->DeleteArcs(s);
        CHECK_EQ(cfst2->NumArcs(s), 0);
        CHECK_EQ(cfst2->NumInputEpsilons(s), 0);
        CHECK_EQ(cfst2->NumOutputEpsilons(s), 0);
      }
      delete cfst2;
    }
  
    void TestMutable() { TestMutable(testfst_); }
  
    // This verifies the copy methods.
    template <class G>
    void TestAssign(G *fst) const {
      // Assignment from G
      G afst1;
      afst1 = *fst;
      CHECK(Equal(*fst, afst1));
  
      // Assignment from Fst
      G afst2;
      afst2 = *static_cast<const Fst<Arc> *>(fst);
      CHECK(Equal(*fst, afst2));
  
      // Assignment from self
      afst2.operator=(afst2);
      CHECK(Equal(*fst, afst2));
    }
  
    void TestAssign() { TestAssign(testfst_); }
  
    // This verifies the copy methods.
    template <class G>
    void TestCopy(const G &fst) const {
      // Copy from G
      G c1fst(fst);
      TestBase(c1fst);
  
      // Copy from Fst
      const G c2fst(static_cast<const Fst<Arc> &>(fst));
      TestBase(c2fst);
  
      // Copy from self
      const G *c3fst = fst.Copy();
      TestBase(*c3fst);
      delete c3fst;
    }
  
    void TestCopy() const { TestCopy(*testfst_); }
  
    // This verifies the read/write methods.
    template <class G>
    void TestIO(const G &fst) const {
      const string filename = FLAGS_tmpdir + "/test.fst";
      const string aligned = FLAGS_tmpdir + "/aligned.fst";
      {
        // write/read
        CHECK(fst.Write(filename));
        G *ffst = G::Read(filename);
        CHECK(ffst);
        TestBase(*ffst);
        delete ffst;
      }
  
      {
        // generic read/cast/test
        Fst<Arc> *gfst = Fst<Arc>::Read(filename);
        CHECK(gfst);
        G *dfst = static_cast<G *>(gfst);
        TestBase(*dfst);
  
        // generic write/read/test
        CHECK(gfst->Write(filename));
        Fst<Arc> *hfst = Fst<Arc>::Read(filename);
        CHECK(hfst);
        TestBase(*hfst);
        delete gfst;
        delete hfst;
      }
  
      {
        // check mmaping by first writing the file with the aligned attribute set
        {
          std::ofstream ostr(aligned);
          FstWriteOptions opts;
          opts.source = aligned;
          opts.align = true;
          CHECK(fst.Write(ostr, opts));
        }
        std::ifstream istr(aligned);
        FstReadOptions opts;
        opts.mode = FstReadOptions::ReadMode("map");
        opts.source = aligned;
        G *gfst = G::Read(istr, opts);
        CHECK(gfst);
        TestBase(*gfst);
        delete gfst;
      }
  
      // check mmaping of unaligned files to make sure it does not fail.
      {
        {
          std::ofstream ostr(aligned);
          FstWriteOptions opts;
          opts.source = aligned;
          opts.align = false;
          CHECK(fst.Write(ostr, opts));
        }
        std::ifstream istr(aligned);
        FstReadOptions opts;
        opts.mode = FstReadOptions::ReadMode("map");
        opts.source = aligned;
        G *gfst = G::Read(istr, opts);
        CHECK(gfst);
        TestBase(*gfst);
        delete gfst;
      }
  
      // expanded write/read/test
      if (fst.Properties(kExpanded, false)) {
        ExpandedFst<Arc> *efst = ExpandedFst<Arc>::Read(filename);
        CHECK(efst);
        TestBase(*efst);
        TestExpanded(*efst);
        delete efst;
      }
  
      // mutable write/read/test
      if (fst.Properties(kMutable, false)) {
        MutableFst<Arc> *mfst = MutableFst<Arc>::Read(filename);
        CHECK(mfst);
        TestBase(*mfst);
        TestExpanded(*mfst);
        TestMutable(mfst);
        delete mfst;
      }
    }
  
    void TestIO() const { TestIO(*testfst_); }
  
   private:
    // This constructs test FSTs. Given a mutable FST, will leave
    // the FST as follows:
    // (I) NumStates() = nstates
    // (II) Start() = 0
    // (III) Final(s) =  NthWeight(s)
    // (IV) For state s:
    //     (a) NumArcs(s) == s
    //     (b) For ith arc of s:
    //         (1) ilabel = i
    //         (2) olabel = 0
    //         (3) weight = NthWeight(i)
    //         (4) nextstate = s
    void InitFst(MutableFst<Arc> *fst, size_t nstates) const {
      fst->DeleteStates();
      CHECK_GT(nstates, 0);
  
      for (StateId s = 0; s < nstates; ++s) {
        fst->AddState();
        fst->SetFinal(s, NthWeight(s));
        for (size_t i = 1; i <= s; ++i) {
          Arc arc(i, 0, NthWeight(i), s);
          fst->AddArc(s, arc);
        }
      }
  
      fst->SetStart(0);
    }
  
    // Generates One() + ... + One() (n times)
    Weight NthWeight(int n) const {
      Weight w = Weight::Zero();
      for (int i = 0; i < n; ++i) w = Plus(w, Weight::One());
      return w;
    }
  
    F *testfst_;  // what we're testing
  };
  
  }  // namespace fst
  
  #endif  // FST_TEST_FST_TEST_H_