Blame view

tools/sctk-2.4.10/src/asclite/core/statistics.cpp 2.23 KB
8dcb6dfcb   Yannick Estève   first commit
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
  /*
   * ASCLITE
   * Author: Jerome Ajot, Jon Fiscus, Nicolas Radde, Chris Laprun
   *
   * This software was developed at the National Institute of Standards and Technology by 
   * employees of the Federal Government in the course of their official duties. Pursuant
   * to title 17 Section 105 of the United States Code this software is not subject to
   * copyright protection and is in the public domain. ASCLITE is an experimental system.
   * NIST assumes no responsibility whatsoever for its use by other parties, and makes no
   * guarantees, expressed or implied, about its quality, reliability, or any other
   * characteristic. We would appreciate acknowledgement if the software is used.
   *
   * THIS SOFTWARE IS PROVIDED "AS IS."  With regard to this software, NIST MAKES NO EXPRESS
   * OR IMPLIED WARRANTY AS TO ANY MATTER WHATSOEVER, INCLUDING MERCHANTABILITY,
   * OR FITNESS FOR A PARTICULAR PURPOSE.
   */
  
  #include "statistics.h"
  
  Statistics::Statistics(const vector<int> & _vecValues)
  {
  	for(size_t i=0; i< _vecValues.size(); ++i)
  		m_VecValues.push_back((double) _vecValues[i]);
  	Compute(); 
  	
  }
  
  Statistics::Statistics(const vector<double> & _vecValues) : m_VecValues(_vecValues)
  {
  	Compute();
  }
  
  void Statistics::Compute()	
  {
  	if(!m_VecValues.empty())
  	{
  		size_t i;
  		double n = (double)m_VecValues.size();
  		double sumSqr = 0.0;
  		
  		sort(m_VecValues.begin(), m_VecValues.end());
  		m_Mean = m_SD = m_Sum = 0.0;
  		m_MaxSize = 0;
  		
  		for(i=0; i<m_VecValues.size(); ++i)
  		{
  			m_Sum += m_VecValues[i];
  			sumSqr += m_VecValues[i]*m_VecValues[i];
  			m_MaxSize = max(m_MaxSize, (int)( ceil(log((double)m_VecValues[i])/log(10.0)) ) );
  		}
  		
  		m_Mean = m_Sum/((double) m_VecValues.size());
  		m_SD = sqrt((n * sumSqr - m_Sum*m_Sum) / ( n * (n-1)));
  		
  		if(m_VecValues.size()%2 == 0)
  			m_Median = (m_VecValues[m_VecValues.size()/2]+m_VecValues[m_VecValues.size()/2-1])/2.0;
  		else
  			m_Median = m_VecValues[m_VecValues.size()/2];
  		
  		m_MaxSize = max(m_MaxSize, (int)( ceil(log(m_Sum)/log(10.0)) ) +2);
  		m_MaxSize = max(m_MaxSize, (int)( ceil(log(m_Mean)/log(10.0)) ) +2);
  		m_MaxSize = max(m_MaxSize, (int)( ceil(log(m_SD)/log(10.0)) ) +2);
  		m_MaxSize = max(m_MaxSize, (int)( ceil(log(m_Median)/log(10.0)) ) +2);
  	}
  	else
  	{
  		m_Sum = m_Mean = m_SD = m_Median = 0.0;
  		m_MaxSize = 1;
  	}
  }