Blame view
egs/aspire/s5/local/chain/tuning/run_blstm_7b.sh
11.6 KB
8dcb6dfcb first commit |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 |
#!/bin/bash set -e # based on run_blstm_6h.sh in fisher_swbd recipe # configs for 'chain' stage=11 # assuming you already ran the xent systems train_stage=-10 get_egs_stage=-10 dir=exp/chain/blstm_7b decode_iter= # training options num_epochs=4 remove_egs=false common_egs_dir= num_data_reps=3 min_seg_len= xent_regularize=0.1 chunk_width=150 chunk_left_context=40 chunk_right_context=40 # End configuration section. echo "$0 $@" # Print the command line for logging . ./cmd.sh . ./path.sh . ./utils/parse_options.sh if ! cuda-compiled; then cat <<EOF && exit 1 This script is intended to be used with GPUs but you have not compiled Kaldi with CUDA If you want to use GPUs (and have them), go to src/, and configure and make on a machine where "nvcc" is installed. EOF fi ali_dir=exp/tri5a_rvb_ali treedir=exp/chain/tri6_tree_11000 lang=data/lang_chain # The iVector-extraction and feature-dumping parts are the same as the standard # nnet3 setup, and you can skip them by setting "--stage 8" if you have already # run those things. local/nnet3/run_ivector_common.sh --stage $stage --num-data-reps 3|| exit 1; if [ $stage -le 7 ]; then # Create a version of the lang/ directory that has one state per phone in the # topo file. [note, it really has two states.. the first one is only repeated # once, the second one has zero or more repeats.] rm -rf $lang cp -r data/lang $lang silphonelist=$(cat $lang/phones/silence.csl) || exit 1; nonsilphonelist=$(cat $lang/phones/nonsilence.csl) || exit 1; # Use our special topology... note that later on may have to tune this # topology. steps/nnet3/chain/gen_topo.py $nonsilphonelist $silphonelist >$lang/topo fi if [ $stage -le 8 ]; then # Build a tree using our new topology. # we build the tree using clean features (data/train) rather than # the augmented features (data/train_rvb) to get better alignments steps/nnet3/chain/build_tree.sh --frame-subsampling-factor 3 \ --cmd "$train_cmd" 11000 data/train $lang exp/tri5a $treedir fi if [ -z $min_seg_len ]; then min_seg_len=$(python -c "print ($chunk_width+5)/100.0") fi if [ $stage -le 9 ]; then [ -d data/train_rvb_min${min_seg_len}_hires ] && rm -rf data/train_rvb_min${min_seg_len}_hires steps/cleanup/combine_short_segments.py --minimum-duration $min_seg_len \ --input-data-dir data/train_rvb_hires \ --output-data-dir data/train_rvb_min${min_seg_len}_hires #extract ivectors for the new data steps/online/nnet2/copy_data_dir.sh --utts-per-spk-max 2 \ data/train_rvb_min${min_seg_len}_hires data/train_rvb_min${min_seg_len}_hires_max2 ivectordir=exp/nnet3/ivectors_train_min${min_seg_len} if [[ $(hostname -f) == *.clsp.jhu.edu ]]; then # this shows how you can split across multiple file-systems. utils/create_split_dir.pl /export/b0{1,2,3,4}/$USER/kaldi-data/egs/aspire/s5/$ivectordir/storage $ivectordir/storage fi steps/online/nnet2/extract_ivectors_online.sh --cmd "$train_cmd" --nj 200 \ data/train_rvb_min${min_seg_len}_hires_max2 \ exp/nnet3/extractor $ivectordir || exit 1; # combine the non-hires features for alignments/lattices [ -d data/train_min${min_seg_len} ] && rm -r data/train_min${min_seg_len}; utt_prefix="THISISUNIQUESTRING_" spk_prefix="THISISUNIQUESTRING_" utils/copy_data_dir.sh --spk-prefix "$spk_prefix" --utt-prefix "$utt_prefix" \ data/train data/train_temp_for_lats steps/cleanup/combine_short_segments.py --minimum-duration $min_seg_len \ --input-data-dir data/train_temp_for_lats \ --output-data-dir data/train_min${min_seg_len} fi if [ $stage -le 10 ]; then # Get the alignments as lattices (gives the chain training more freedom). # use the same num-jobs as the alignments nj=200 lat_dir=exp/tri5a_min${min_seg_len}_lats steps/align_fmllr_lats.sh --nj $nj --cmd "$train_cmd" data/train_min${min_seg_len} \ data/lang exp/tri5a $lat_dir rm -f $lat_dir/fsts.*.gz # save space rvb_lat_dir=exp/tri5a_rvb_min${min_seg_len}_lats mkdir -p $rvb_lat_dir/temp/ lattice-copy "ark:gunzip -c $lat_dir/lat.*.gz |" ark,scp:$rvb_lat_dir/temp/lats.ark,$rvb_lat_dir/temp/lats.scp # copy the lattices for the reverberated data rm -f $rvb_lat_dir/temp/combined_lats.scp touch $rvb_lat_dir/temp/combined_lats.scp for i in `seq 1 $num_data_reps`; do cat $rvb_lat_dir/temp/lats.scp | sed -e "s/THISISUNIQUESTRING/rev${i}/g" >> $rvb_lat_dir/temp/combined_lats.scp done sort -u $rvb_lat_dir/temp/combined_lats.scp > $rvb_lat_dir/temp/combined_lats_sorted.scp lattice-copy scp:$rvb_lat_dir/temp/combined_lats_sorted.scp "ark:|gzip -c >$rvb_lat_dir/lat.1.gz" || exit 1; echo "1" > $rvb_lat_dir/num_jobs # copy other files from original lattice dir for f in cmvn_opts final.mdl splice_opts tree; do cp $lat_dir/$f $rvb_lat_dir/$f done fi if [ $stage -le 11 ]; then echo "$0: creating neural net configs using the xconfig parser"; num_targets=$(tree-info $treedir/tree | grep num-pdfs | awk '{print $2}') [ -z $num_targets ] && { echo "$0: error getting num-targets"; exit 1; } learning_rate_factor=$(echo "print (0.5/$xent_regularize)" | python) lstm_opts="decay-time=20" mkdir -p $dir/configs cat <<EOF > $dir/configs/network.xconfig input dim=100 name=ivector input dim=40 name=input # please note that it is important to have input layer with the name=input # as the layer immediately preceding the fixed-affine-layer to enable # the use of short notation for the descriptor fixed-affine-layer name=lda input=Append(-2,-1,0,1,2,ReplaceIndex(ivector, t, 0)) affine-transform-file=$dir/configs/lda.mat # the first splicing is moved before the lda layer, so no splicing here # check steps/libs/nnet3/xconfig/lstm.py for the other options and defaults fast-lstmp-layer name=blstm1-forward input=lda cell-dim=1024 recurrent-projection-dim=256 non-recurrent-projection-dim=256 delay=-3 $lstm_opts fast-lstmp-layer name=blstm1-backward input=lda cell-dim=1024 recurrent-projection-dim=256 non-recurrent-projection-dim=256 delay=3 $lstm_opts fast-lstmp-layer name=blstm2-forward input=Append(blstm1-forward, blstm1-backward) cell-dim=1024 recurrent-projection-dim=256 non-recurrent-projection-dim=256 delay=-3 $lstm_opts fast-lstmp-layer name=blstm2-backward input=Append(blstm1-forward, blstm1-backward) cell-dim=1024 recurrent-projection-dim=256 non-recurrent-projection-dim=256 delay=3 $lstm_opts fast-lstmp-layer name=blstm3-forward input=Append(blstm2-forward, blstm2-backward) cell-dim=1024 recurrent-projection-dim=256 non-recurrent-projection-dim=256 delay=-3 $lstm_opts fast-lstmp-layer name=blstm3-backward input=Append(blstm2-forward, blstm2-backward) cell-dim=1024 recurrent-projection-dim=256 non-recurrent-projection-dim=256 delay=3 $lstm_opts ## adding the layers for chain branch output-layer name=output input=Append(blstm3-forward, blstm3-backward) output-delay=0 include-log-softmax=false dim=$num_targets max-change=1.5 # adding the layers for xent branch # This block prints the configs for a separate output that will be # trained with a cross-entropy objective in the 'chain' models... this # has the effect of regularizing the hidden parts of the model. we use # 0.5 / args.xent_regularize as the learning rate factor- the factor of # 0.5 / args.xent_regularize is suitable as it means the xent # final-layer learns at a rate independent of the regularization # constant; and the 0.5 was tuned so as to make the relative progress # similar in the xent and regular final layers. output-layer name=output-xent input=Append(blstm3-forward, blstm3-backward) output-delay=0 dim=$num_targets learning-rate-factor=$learning_rate_factor max-change=1.5 EOF steps/nnet3/xconfig_to_configs.py --xconfig-file $dir/configs/network.xconfig --config-dir $dir/configs/ fi if [ $stage -le 12 ]; then if [[ $(hostname -f) == *.clsp.jhu.edu ]] && [ ! -d $dir/egs/storage ]; then utils/create_split_dir.pl \ /export/b0{5,6,7,8}/$USER/kaldi-data/egs/aspire-$(date +'%m_%d_%H_%M')/s5c/$dir/egs/storage $dir/egs/storage fi touch $dir/egs/.nodelete # keep egs around when that run dies. steps/nnet3/chain/train.py --stage $train_stage \ --egs.dir "$common_egs_dir" \ --cmd "$decode_cmd" \ --feat.online-ivector-dir exp/nnet3/ivectors_train_min${min_seg_len} \ --feat.cmvn-opts "--norm-means=false --norm-vars=false" \ --chain.xent-regularize $xent_regularize \ --chain.leaky-hmm-coefficient 0.1 \ --chain.l2-regularize 0.00005 \ --chain.apply-deriv-weights false \ --chain.lm-opts="--num-extra-lm-states=2000" \ --trainer.num-chunk-per-minibatch 64 \ --trainer.max-param-change 1.414 \ --egs.stage $get_egs_stage \ --egs.opts "--frames-overlap-per-eg 0" \ --egs.chunk-width $chunk_width \ --egs.chunk-left-context $chunk_left_context \ --egs.chunk-right-context $chunk_right_context \ --egs.chunk-left-context-initial=0 \ --egs.chunk-right-context-final=0 \ --egs.dir "$common_egs_dir" \ --trainer.frames-per-iter 1500000 \ --trainer.num-epochs $num_epochs \ --trainer.optimization.num-jobs-initial 3 \ --trainer.optimization.num-jobs-final 16 \ --trainer.optimization.initial-effective-lrate 0.001 \ --trainer.optimization.final-effective-lrate 0.0001 \ --trainer.optimization.shrink-value 0.99 \ --trainer.optimization.momentum 0.0 \ --trainer.deriv-truncate-margin 8 \ --cleanup.remove-egs $remove_egs \ --feat-dir data/train_rvb_min${min_seg_len}_hires \ --tree-dir $treedir \ --lat-dir exp/tri5a_rvb_min${min_seg_len}_lats \ --dir $dir || exit 1; fi if [ $stage -le 13 ]; then # Note: it might appear that this $lang directory is mismatched, and it is as # far as the 'topo' is concerned, but this script doesn't read the 'topo' from # the lang directory. utils/mkgraph.sh --self-loop-scale 1.0 data/lang_pp_test $dir $dir/graph_pp fi if [ $stage -le 14 ]; then extra_left_context=$[$chunk_left_context+10] extra_right_context=$[$chunk_right_context+10] # %WER 25.5 | 2120 27212 | 81.0 11.9 7.1 6.5 25.5 75.0 | -1.022 | exp/chain/blstm_asp2/decode_dev_aspire_whole_uniformsegmented_win10_over5_v7_iterfinal_pp_fg/score_8/penalty_0.5/ctm.filt.filt.sys local/nnet3/decode.sh --stage 4 --decode-num-jobs 30 --affix "v7" \ --extra-left-context $extra_left_context \ --extra-right-context $extra_right_context \ --extra-left-context-initial 0 \ --extra-right-context-final 0 \ --frames-per-chunk $chunk_width \ --acwt 1.0 --post-decode-acwt 10.0 \ --window 10 --overlap 5 \ --sub-speaker-frames 6000 --max-count 75 --ivector-scale 0.75 \ --pass2-decode-opts "--min-active 1000" \ dev_aspire data/lang $dir/graph_pp $dir fi exit 0; #online decoding is not yet supported with RNN AMs. See https://github.com/kaldi-asr/kaldi/issues/1091 # %WER 28.0 | 2120 27217 | 78.6 13.3 8.1 6.7 28.0 77.0 | -0.852 | exp/chain/blstm_asp2/decode_dev_aspire_whole_uniformsegmented_win10_over5_v7_iter600_pp_fg/score_9/penalty_0.25/ctm.filt.filt.sys # %WER 27.1 | 2120 27217 | 78.9 13.1 7.9 6.0 27.1 75.8 | -0.944 | exp/chain/blstm_asp2/decode_dev_aspire_whole_uniformsegmented_win10_over5_v7_iter700_pp_fg/score_8/penalty_0.5/ctm.filt.filt.sys # %WER 26.9 | 2120 27218 | 79.7 12.1 8.2 6.6 26.9 76.3 | -0.839 | exp/chain/blstm_asp2/decode_dev_aspire_whole_uniformsegmented_win10_over5_v7_iter1000_pp_fg/score_10/penalty_0.0/ctm.filt.filt.sys # %WER 26.6 | 2120 27220 | 80.2 12.7 7.1 6.8 26.6 76.6 | -1.035 | exp/chain/blstm_asp2/decode_dev_aspire_whole_uniformsegmented_win10_over5_v7_iter1200_pp_fg/score_8/penalty_0.25/ctm.filt.filt.sys # %WER 26.3 | 2120 27223 | 80.6 12.3 7.2 6.9 26.3 76.8 | -0.978 | exp/chain/blstm_asp2/decode_dev_aspire_whole_uniformsegmented_win10_over5_v7_iter1400_pp_fg/score_9/penalty_0.0/ctm.filt.filt.sys |