Blame view
egs/aspire/s5/local/chain/tuning/run_tdnn_lstm_1a.sh
11.7 KB
8dcb6dfcb first commit |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 |
#!/bin/bash set -e # based on run_tdnn_7b.sh in the swbd recipe # System exp/chain/tdnn_lstm_1a # WER on dev_aspire (fg) 22.9 # Final train prob -0.118 # Final valid prob -0.123 # Final train prob (xent) -1.243 # Final valid prob (xent) -1.2350 # Num-parameters 49945168 # configs for 'chain' stage=0 train_stage=-10 get_egs_stage=-10 test_stage=1 nj=70 tdnn_affix=_1a hidden_dim=1024 cell_dim=1024 projection_dim=256 # training options minibatch_size=64,32 chunk_left_context=40 chunk_right_context=0 dropout_schedule='0,0@0.20,0.3@0.50,0' xent_regularize=0.025 label_delay=5 # decode options extra_left_context=50 extra_right_context=0 # training options num_epochs=4 remove_egs=false common_egs_dir= num_data_reps=3 # End configuration section. echo "$0 $@" # Print the command line for logging . ./cmd.sh . ./path.sh . ./utils/parse_options.sh if ! cuda-compiled; then cat <<EOF && exit 1 This script is intended to be used with GPUs but you have not compiled Kaldi with CUDA If you want to use GPUs (and have them), go to src/, and configure and make on a machine where "nvcc" is installed. EOF fi train_set=train_rvb gmm_dir=exp/tri5a # used to get training lattices (for chain supervision) treedir=exp/chain/tree_bi_a lat_dir=exp/chain/tri5a_${train_set}_lats # training lattices directory dir=exp/chain/tdnn_lstm${tdnn_affix} train_data_dir=data/${train_set}_hires train_ivector_dir=exp/nnet3/ivectors_${train_set} lang=data/lang_chain # The iVector-extraction and feature-dumping parts are the same as the standard # nnet3 setup, and you can skip them by setting "--stage 8" if you have already # run those things. local/nnet3/run_ivector_common.sh --stage $stage --num-data-reps 3 || exit 1 mkdir -p $dir norvb_lat_dir=exp/chain/tri5a_train_lats if [ $stage -le 7 ]; then # Get the alignments as lattices (gives the chain training more freedom). # use the same num-jobs as the alignments steps/align_fmllr_lats.sh --nj 30 --cmd "$train_cmd" \ --generate-ali-from-lats true data/train \ data/lang $gmm_dir $norvb_lat_dir || exit 1; rm $norvb_lat_dir/fsts.*.gz # save space fi if [ $stage -le 8 ]; then mkdir -p $lat_dir utils/split_data.sh data/${train_set} $nj for n in `seq $nj`; do awk '{print $1}' data/${train_set}/split$nj/$n/utt2spk | \ perl -ane 's/rev[1-3]-//g' > $lat_dir/uttlist.$n.$nj done rm -f $lat_dir/lat_tmp.*.{ark,scp} 2>/dev/null norvb_nj=$(cat $norvb_lat_dir/num_jobs) $train_cmd JOB=1:$norvb_nj $lat_dir/log/copy_lattices.JOB.log \ lattice-copy "ark:gunzip -c $norvb_lat_dir/lat.JOB.gz |" \ ark,scp:$lat_dir/lat_tmp.JOB.ark,$lat_dir/lat_tmp.JOB.scp || exit 1 for n in `seq 3`; do cat $lat_dir/lat_tmp.*.scp | awk -v n=$n '{print "rev"n"-"$1" "$2}' done > $lat_dir/lat_rvb.scp $train_cmd JOB=1:$nj $lat_dir/log/copy_rvb_lattices.JOB.log \ lattice-copy \ "scp:utils/filter_scp.pl data/${train_set}/split$nj/JOB/utt2spk $lat_dir/lat_rvb.scp |" \ "ark:| gzip -c > $lat_dir/lat.JOB.gz" || exit 1 rm $lat_dir/lat_tmp.* $lat_dir/lat_rvb.scp echo $nj > $lat_dir/num_jobs for f in cmvn_opts final.mdl splice_opts tree; do cp $norvb_lat_dir/$f $lat_dir/$f done fi if [ $stage -le 10 ]; then # Create a version of the lang/ directory that has one state per phone in the # topo file. [note, it really has two states.. the first one is only repeated # once, the second one has zero or more repeats.] rm -rf $lang cp -r data/lang $lang silphonelist=$(cat $lang/phones/silence.csl) || exit 1; nonsilphonelist=$(cat $lang/phones/nonsilence.csl) || exit 1; # Use our special topology... note that later on may have to tune this # topology. steps/nnet3/chain/gen_topo.py $nonsilphonelist $silphonelist >$lang/topo fi if [ $stage -le 11 ]; then # Build a tree using our new topology. # we build the tree using clean features (data/train) rather than # the augmented features (data/train_rvb) to get better alignments steps/nnet3/chain/build_tree.sh --frame-subsampling-factor 3 \ --leftmost-questions-truncate -1 \ --context-opts "--context-width=2 --central-position=1" \ --cmd "$train_cmd" 7000 data/train $lang exp/tri5a $treedir || exit 1 fi if [ $stage -le 12 ]; then echo "$0: creating neural net configs using the xconfig parser"; num_targets=$(tree-info $treedir/tree |grep num-pdfs|awk '{print $2}') learning_rate_factor=$(echo "print (0.5/$xent_regularize)" | python) lstm_opts="decay-time=40" mkdir -p $dir/configs cat <<EOF > $dir/configs/network.xconfig input dim=100 name=ivector input dim=40 name=input # please note that it is important to have input layer with the name=input # as the layer immediately preceding the fixed-affine-layer to enable # the use of short notation for the descriptor fixed-affine-layer name=lda input=Append(-2,-1,0,1,2,ReplaceIndex(ivector, t, 0)) affine-transform-file=$dir/configs/lda.mat # the first splicing is moved before the lda layer, so no splicing here relu-batchnorm-layer name=tdnn1 dim=$hidden_dim relu-batchnorm-layer name=tdnn2 input=Append(-1,0,1) dim=$hidden_dim relu-batchnorm-layer name=tdnn3 input=Append(-1,0,1) dim=$hidden_dim fast-lstmp-layer name=lstm1 cell-dim=$cell_dim recurrent-projection-dim=$projection_dim non-recurrent-projection-dim=$projection_dim delay=-3 dropout-proportion=0.0 $lstm_opts relu-batchnorm-layer name=tdnn4 input=Append(-3,0,3) dim=$hidden_dim relu-batchnorm-layer name=tdnn5 input=Append(-3,0,3) dim=$hidden_dim fast-lstmp-layer name=lstm2 cell-dim=$cell_dim recurrent-projection-dim=$projection_dim non-recurrent-projection-dim=$projection_dim delay=-3 dropout-proportion=0.0 $lstm_opts relu-batchnorm-layer name=tdnn6 input=Append(-3,0,3) dim=$hidden_dim relu-batchnorm-layer name=tdnn7 input=Append(-3,0,3) dim=$hidden_dim fast-lstmp-layer name=lstm3 cell-dim=$cell_dim recurrent-projection-dim=$projection_dim non-recurrent-projection-dim=$projection_dim delay=-3 dropout-proportion=0.0 $lstm_opts relu-batchnorm-layer name=tdnn8 input=Append(-3,0,3) dim=$hidden_dim relu-batchnorm-layer name=tdnn9 input=Append(-3,0,3) dim=$hidden_dim fast-lstmp-layer name=lstm4 cell-dim=$cell_dim recurrent-projection-dim=$projection_dim non-recurrent-projection-dim=$projection_dim delay=-3 dropout-proportion=0.0 $lstm_opts ## adding the layers for chain branch output-layer name=output input=lstm4 output-delay=$label_delay include-log-softmax=false dim=$num_targets max-change=1.5 # adding the layers for xent branch # This block prints the configs for a separate output that will be # trained with a cross-entropy objective in the 'chain' models... this # has the effect of regularizing the hidden parts of the model. we use # 0.5 / args.xent_regularize as the learning rate factor- the factor of # 0.5 / args.xent_regularize is suitable as it means the xent # final-layer learns at a rate independent of the regularization # constant; and the 0.5 was tuned so as to make the relative progress # similar in the xent and regular final layers. output-layer name=output-xent input=lstm4 output-delay=$label_delay dim=$num_targets learning-rate-factor=$learning_rate_factor max-change=1.5 EOF steps/nnet3/xconfig_to_configs.py --xconfig-file $dir/configs/network.xconfig --config-dir $dir/configs/ fi if [ $stage -le 13 ]; then if [[ $(hostname -f) == *.clsp.jhu.edu ]] && [ ! -d $dir/egs/storage ]; then utils/create_split_dir.pl \ /export/b0{5,6,7,8}/$USER/kaldi-data/egs/aspire-$(date +'%m_%d_%H_%M')/s5c/$dir/egs/storage $dir/egs/storage fi mkdir -p $dir/egs touch $dir/egs/.nodelete # keep egs around when that run dies. steps/nnet3/chain/train.py --stage $train_stage \ --cmd "$decode_cmd" \ --feat.online-ivector-dir $train_ivector_dir \ --feat.cmvn-opts "--norm-means=false --norm-vars=false" \ --chain.xent-regularize $xent_regularize \ --chain.leaky-hmm-coefficient 0.1 \ --chain.l2-regularize 0.00005 \ --chain.apply-deriv-weights false \ --chain.lm-opts="--num-extra-lm-states=2000" \ --trainer.dropout-schedule $dropout_schedule \ --trainer.num-chunk-per-minibatch 64,32 \ --trainer.frames-per-iter 1500000 \ --trainer.max-param-change 2.0 \ --trainer.num-epochs $num_epochs \ --trainer.optimization.shrink-value 0.99 \ --trainer.optimization.num-jobs-initial 3 \ --trainer.optimization.num-jobs-final 16 \ --trainer.optimization.initial-effective-lrate 0.001 \ --trainer.optimization.final-effective-lrate 0.0001 \ --trainer.optimization.momentum 0.0 \ --trainer.deriv-truncate-margin 8 \ --egs.stage $get_egs_stage \ --egs.opts "--frames-overlap-per-eg 0 --generate-egs-scp true" \ --egs.chunk-width 160,140,110,80 \ --egs.chunk-left-context $chunk_left_context \ --egs.chunk-right-context $chunk_right_context \ --egs.chunk-left-context-initial 0 \ --egs.chunk-right-context-final 0 \ --egs.dir "$common_egs_dir" \ --cleanup.remove-egs $remove_egs \ --feat-dir $train_data_dir \ --tree-dir $treedir \ --lat-dir $lat_dir \ --dir $dir || exit 1; fi graph_dir=$dir/graph_pp if [ $stage -le 14 ]; then # Note: it might appear that this $lang directory is mismatched, and it is as # far as the 'topo' is concerned, but this script doesn't read the 'topo' from # the lang directory. utils/mkgraph.sh --self-loop-scale 1.0 data/lang_pp_test $dir $graph_dir fi if [ $stage -le 15 ]; then rm $dir/.error 2>/dev/null || true for d in dev_rvb test_rvb; do ( if [ ! -f exp/nnet3/ivectors_${d}/ivector_online.scp ]; then steps/online/nnet2/extract_ivectors_online.sh --cmd "$train_cmd" --nj 30 \ data/${d}_hires exp/nnet3/extractor \ exp/nnet3/ivectors_${d} || { echo "Failed i-vector extraction for data/${d}_hires"; touch $dir/.error; } fi decode_dir=$dir/decode_${d}_pp steps/nnet3/decode.sh --nj 30 --cmd "$decode_cmd" --config conf/decode.config \ --acwt 1.0 --post-decode-acwt 10.0 \ --extra-left-context $extra_left_context \ --extra-right-context $extra_right_context \ --extra-left-context-initial 0 --extra-right-context-final 0 \ --frames-per-chunk 160 \ --online-ivector-dir exp/nnet3/ivectors_${d} \ $graph_dir data/${d}_hires $decode_dir || { echo "Failed decoding in $decode_dir"; touch $dir/.error; } ) & done wait if [ -f $dir/.error ]; then echo "Failed decoding." exit 1 fi fi if [ $stage -le 16 ]; then # %WER 22.9 | 2083 25834 | 81.6 12.0 6.4 4.5 22.9 70.7 | -0.546 | exp/chain/tdnn_lstm_1a/decode_dev_aspire_uniformsegmented_v9_pp_fg/score_8/penalty_0.0/ctm.filt.filt.sys local/nnet3/decode.sh --stage $test_stage --decode-num-jobs 30 --affix "v9" \ --acwt 1.0 --post-decode-acwt 10.0 \ --window 10 --overlap 5 --frames-per-chunk 160 \ --extra-left-context $extra_left_context \ --extra-right-context $extra_right_context \ --extra-left-context-initial 0 --extra-right-context-final 0 \ --sub-speaker-frames 6000 --max-count 75 --ivector-scale 0.75 \ --pass2-decode-opts "--min-active 1000" \ dev_aspire data/lang $dir/graph_pp $dir fi if [ $stage -le 17 ]; then # %WER 24.0 | 2083 25820 | 79.9 12.0 8.1 4.0 24.0 71.8 | -0.444 | exp/chain/tdnn_lstm_1a_online/decode_dev_aspire_uniformsegmented_v9_pp_fg/score_10/penalty_0.0/ctm.filt.filt.sys local/nnet3/decode_online.sh --stage $test_stage --decode-num-jobs 30 --affix "v9" \ --acwt 1.0 --post-decode-acwt 10.0 \ --window 10 --overlap 5 --frames-per-chunk 160 \ --extra-left-context $extra_left_context \ --extra-right-context $extra_right_context \ --extra-left-context-initial 0 \ --max-count 75 \ --pass2-decode-opts "--min-active 1000" \ dev_aspire data/lang $dir/graph_pp $dir fi exit 0; |