Blame view
egs/callhome_egyptian/s5/local/nnet3/run_ivector_common.sh
3.01 KB
8dcb6dfcb first commit |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 |
#!/bin/bash # Inherited from the WSJ nnet3 recipe, modified for use with ECA # this script is called from scripts like run_ms.sh; it does the common stages # of the build, such as feature extraction. # This is actually the same as local/online/run_nnet2_common.sh, except # for the directory names. mfccdir=mfcc stage=1 . ./cmd.sh . ./path.sh . ./utils/parse_options.sh if [ $stage -le 1 ]; then for datadir in train dev test sup h5; do utils/copy_data_dir.sh data/$datadir data/${datadir}_hires steps/make_mfcc.sh --nj 40 --mfcc-config conf/mfcc_hires.conf \ --cmd "$train_cmd" data/${datadir}_hires exp/make_hires/$datadir $mfccdir || exit 1; steps/compute_cmvn_stats.sh data/${datadir}_hires exp/make_hires/$datadir $mfccdir || exit 1; done utils/subset_data_dir.sh --first data/train 7388 data/train_small || exit 1 utils/subset_data_dir.sh --first data/train_hires 7388 data/train_small_hires || exit 1 fi if [ $stage -le 2 ]; then # We need to build a small system just because we need the LDA+MLLT transform # to train the diag-UBM on top of. We align the si84 data for this purpose. steps/align_fmllr.sh --nj 40 --cmd "$train_cmd" \ data/train_small data/lang exp/tri5a exp/nnet3/tri5a_ali_small fi if [ $stage -le 3 ]; then # Train a small system just for its LDA+MLLT transform. We use --num-iters 13 # because after we get the transform (12th iter is the last), any further # training is pointless. steps/train_lda_mllt.sh --cmd "$train_cmd" --num-iters 13 \ --realign-iters "" \ --splice-opts "--left-context=3 --right-context=3" \ 5000 10000 data/train_small_hires data/lang \ exp/nnet3/tri5a_ali_small exp/nnet3/tri5b fi if [ $stage -le 4 ]; then mkdir -p exp/nnet3 steps/online/nnet2/train_diag_ubm.sh --cmd "$train_cmd" --nj 30 \ --num-frames 400000 data/train_small_hires 256 exp/nnet3/tri5b exp/nnet3/diag_ubm fi if [ $stage -le 5 ]; then # even though $nj is just 10, each job uses multiple processes and threads. steps/online/nnet2/train_ivector_extractor.sh --cmd "$train_cmd" --nj 10 \ data/train_hires exp/nnet3/diag_ubm exp/nnet3/extractor || exit 1; fi if [ $stage -le 6 ]; then # We extract iVectors on all the train_si284 data, which will be what we # train the system on. # having a larger number of speakers is helpful for generalization, and to # handle per-utterance decoding well (iVector starts at zero). steps/online/nnet2/copy_data_dir.sh --utts-per-spk-max 2 data/train_hires \ data/train_hires_max2 steps/online/nnet2/extract_ivectors_online.sh --cmd "$train_cmd" --nj 30 \ data/train_hires_max2 exp/nnet3/extractor exp/nnet3/ivectors_train || exit 1; fi if [ $stage -le 7 ]; then rm exp/nnet3/.error 2>/dev/null for data in dev test sup h5; do steps/online/nnet2/extract_ivectors_online.sh --cmd "$train_cmd" --nj 8 \ data/${data}_hires exp/nnet3/extractor exp/nnet3/ivectors_${data} || touch exp/nnet3/.error & done wait [ -f exp/nnet3/.error ] && echo "$0: error extracting iVectors." && exit 1; fi exit 0; |