Blame view

egs/gale_arabic/s5c/local/nnet3/tuning/run_lstm_1a.sh 5.23 KB
8dcb6dfcb   Yannick Estève   first commit
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
  #!/bin/bash
  
  #started from tedlium recipe with few edits
  
  
  set -e -o pipefail -u
  
  # First the options that are passed through to run_ivector_common.sh
  # (some of which are also used in this script directly).
  stage=0
  nj=30
  decode_nj=30
  min_seg_len=1.55
  train_set=train
  gmm=tri2b  # this is the source gmm-dir for the data-type of interest; it
                    # should have alignments for the specified training data.
  num_threads_ubm=32
  nnet3_affix=_cleaned  # cleanup affix for exp dirs, e.g. _cleaned
  
  # Options which are not passed through to run_ivector_common.sh
  affix=
  common_egs_dir=
  reporting_email=
  
  # LSTM options
  train_stage=-10
  splice_indexes="-2,-1,0,1,2 0 0"
  lstm_delay=" -1 -2 -3 "
  label_delay=5
  num_lstm_layers=3
  cell_dim=1024
  hidden_dim=1024
  recurrent_projection_dim=256
  non_recurrent_projection_dim=256
  chunk_width=20
  chunk_left_context=40
  chunk_right_context=0
  max_param_change=2.0
  
  # training options
  srand=0
  num_epochs=6
  initial_effective_lrate=0.0003
  final_effective_lrate=0.00003
  num_jobs_initial=2
  num_jobs_final=3
  momentum=0.5
  num_chunk_per_minibatch=100
  samples_per_iter=20000
  remove_egs=true
  
  #decode options
  extra_left_context=
  extra_right_context=
  frames_per_chunk=
  
  . ./cmd.sh
  . ./path.sh
  . ./utils/parse_options.sh
  
  if ! cuda-compiled; then
    cat <<EOF && exit 1
  This script is intended to be used with GPUs but you have not compiled Kaldi with CUDA
  If you want to use GPUs (and have them), go to src/, and configure and make on a machine
  where "nvcc" is installed.
  EOF
  fi
  
  local/nnet3/run_ivector_common.sh --stage $stage \
                                    --nj $nj \
                                    --min-seg-len $min_seg_len \
                                    --train-set $train_set \
                                    --gmm $gmm \
                                    --num-threads-ubm $num_threads_ubm \
                                    --nnet3-affix "$nnet3_affix"
  
  
  
  gmm_dir=exp/${gmm}
  graph_dir=$gmm_dir/graph
  ali_dir=exp/${gmm}_ali_${train_set}_sp_comb
  dir=exp/nnet3${nnet3_affix}/lstm${affix:+_$affix}
  if [ $label_delay -gt 0 ]; then dir=${dir}_ld$label_delay; fi
  dir=${dir}_sp
  train_data_dir=data/${train_set}_sp_hires_comb
  train_ivector_dir=exp/nnet3${nnet3_affix}/ivectors_${train_set}_sp_hires_comb
  
  
  for f in $train_data_dir/feats.scp $train_ivector_dir/ivector_online.scp \
       $graph_dir/HCLG.fst $ali_dir/ali.1.gz $gmm_dir/final.mdl; do
    [ ! -f $f ] && echo "$0: expected file $f to exist" && exit 1
  done
  
  if [ $stage -le 12 ]; then
    echo "$0: creating neural net configs"
    config_extra_opts=()
    [ ! -z "$lstm_delay" ] && config_extra_opts+=(--lstm-delay "$lstm_delay")
    steps/nnet3/lstm/make_configs.py  "${config_extra_opts[@]}" \
      --feat-dir $train_data_dir \
      --ivector-dir $train_ivector_dir \
      --ali-dir $ali_dir \
      --num-lstm-layers $num_lstm_layers \
      --splice-indexes "$splice_indexes " \
      --cell-dim $cell_dim \
      --hidden-dim $hidden_dim \
      --recurrent-projection-dim $recurrent_projection_dim \
      --non-recurrent-projection-dim $non_recurrent_projection_dim \
      --label-delay $label_delay \
      --self-repair-scale-nonlinearity 0.00001 \
    $dir/configs || exit 1;
  fi
  
  if [ $stage -le 13 ]; then
    if [[ $(hostname -f) == *.clsp.jhu.edu ]] && [ ! -d $dir/egs/storage ]; then
      utils/create_split_dir.pl \
       /export/b0{3,4,5,6}/$USER/kaldi-data/egs/tedlium-$(date +'%m_%d_%H_%M')/s5_r2/$dir/egs/storage $dir/egs/storage
    fi
    
    steps/nnet3/train_rnn.py --stage=$train_stage \
      --cmd="$decode_cmd" \
      --feat.online-ivector-dir=$train_ivector_dir \
      --feat.cmvn-opts="--norm-means=false --norm-vars=false" \
      --trainer.srand=$srand \
      --trainer.num-epochs=$num_epochs \
      --trainer.samples-per-iter=$samples_per_iter \
      --trainer.optimization.num-jobs-initial=$num_jobs_initial \
      --trainer.optimization.num-jobs-final=$num_jobs_final \
      --trainer.optimization.initial-effective-lrate=$initial_effective_lrate \
      --trainer.optimization.final-effective-lrate=$final_effective_lrate \
      --trainer.optimization.shrink-value 0.99 \
      --trainer.rnn.num-chunk-per-minibatch=$num_chunk_per_minibatch \
      --trainer.optimization.momentum=$momentum \
      --egs.chunk-width=$chunk_width \
      --egs.chunk-left-context=$chunk_left_context \
      --egs.chunk-right-context=$chunk_right_context \
      --egs.dir="$common_egs_dir" \
      --cleanup.remove-egs=$remove_egs \
      --cleanup.preserve-model-interval=1 \
      --use-gpu=true \
      --feat-dir=$train_data_dir \
      --ali-dir=$ali_dir \
      --lang=data/lang \
      --reporting.email="$reporting_email" \
      --dir=$dir  || exit 1;
  fi
  
  if [ $stage -le 14 ]; then
    [ -z $extra_left_context ] && extra_left_context=$chunk_left_context;
    [ -z $extra_right_context ] && extra_right_context=$chunk_right_context;
    [ -z $frames_per_chunk ] && frames_per_chunk=$chunk_width;
    rm $dir/.error 2>/dev/null || true
    steps/nnet3/decode.sh --nj $decode_nj --cmd "$decode_cmd"  --num-threads 4 \
      --extra-left-context $extra_left_context \
      --extra-right-context $extra_right_context \
      --online-ivector-dir exp/nnet3${nnet3_affix}/ivectors_test_hires \
      ${graph_dir} data/test_hires ${dir}/decode || exit 1
      steps/lmrescore_const_arpa.sh --cmd "$decode_cmd" data/lang data/lang_rescore \
      data/test_hires ${dir}/decode_test ${dir}/decode_test_rescore || exit 1
  fi
  
  exit 0;