Blame view

egs/tedlium/s5/local/chain/run_tdnn.sh 7.55 KB
8dcb6dfcb   Yannick Estève   first commit
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
  #!/bin/bash
  #
  # This script requires that you have run the toplevel run.sh script in TEDLIUM up to stage 7.
  #
  # Results: (Run for x in exp/chain/tdnn/decode*; do [ -d $x ] && grep Sum $x/score_*/*.sys | utils/best_wer.sh; done 2>/dev/null)
  ## Number of parameters: 6172530
  ## %WER 14.1 | 507 17792 | 88.6 7.3 4.1 2.7 14.1 92.9 | 0.075 | exp/chain/tdnn/decode_dev/score_10_0.5/ctm.filt.filt.sys
  ## %WER 13.3 | 507 17792 | 89.7 6.9 3.4 2.9 13.3 92.1 | 0.000 | exp/chain/tdnn/decode_dev_rescore/score_10_0.0/ctm.filt.filt.sys
  ## %WER 13.8 | 1155 27512 | 89.4 7.5 3.1 3.2 13.8 87.9 | 0.101 | exp/chain/tdnn/decode_test/score_10_0.0/ctm.filt.filt.sys
  ## %WER 12.9 | 1155 27512 | 90.1 6.6 3.3 2.9 12.9 86.1 | 0.043 | exp/chain/tdnn/decode_test_rescore/score_10_0.0/ctm.filt.filt.sys
  # The final WER (rescored WER on the test set) is what we are interested in.
  
  # To reproduce the setup used in the paper, set the following variables:
  # affix=_more_ce
  # relu_dim=525
  # xent_regularize=0.2
  #
  # Results: (Run for x in exp/chain/tdnn_more_ce/decode*; do [ -d $x ] && grep Sum $x/score_*/*.sys | utils/best_wer.sh; done 2>/dev/null)
  ## Number of parameters: 8758742
  ## %WER 14.3 | 507 17792 | 89.0 7.8 3.2 3.3 14.3 93.5 | 0.116 | exp/chain/tdnn_more_ce/decode_dev/score_10_0.0/ctm.filt.filt.sys
  ## %WER 13.0 | 507 17792 | 90.0 6.9 3.2 2.9 13.0 91.3 | -0.003 | exp/chain/tdnn_more_ce/decode_devv_rescore/score_10_0.0/ctm.filt.filt.sys
  ## %WER 13.8 | 1155 27512 | 89.1 7.4 3.4 2.9 13.8 87.5 | 0.082 | exp/chain/tdnn_more_ce/decode_test/score_10_0.5/ctm.filt.filt.sys
  ## %WER 12.8 | 1155 27512 | 90.4 6.6 3.1 3.1 12.8 86.7 | 0.014 | exp/chain/tdnn_more_ce/decode_test_rescore/score_10_0.0/ctm.filt.filt.sys
  
  set -uo pipefail
  
  # configs for 'chain'
  affix=
  stage=0 # After running the entire script once, you can set stage=12 to tune the neural net only.
  train_stage=-10
  get_egs_stage=-10
  dir=exp/chain/tdnn
  decode_iter=
  
  # TDNN options
  # this script uses the new tdnn config generator so it needs a final 0 to reflect that the final layer input has no splicing
  self_repair_scale=0.00001
  # training options
  num_epochs=4
  initial_effective_lrate=0.001
  final_effective_lrate=0.0001
  max_param_change=2.0
  final_layer_normalize_target=0.5
  num_jobs_initial=3
  num_jobs_final=8
  minibatch_size=128
  relu_dim=425
  frames_per_eg=150
  remove_egs=false
  xent_regularize=0.1
  
  
  # End configuration section.
  echo "$0 $@"  # Print the command line for logging
  
  . ./cmd.sh
  . ./path.sh
  . ./utils/parse_options.sh
  
  dir=${dir}${affix}
  
  if ! cuda-compiled; then
    cat <<EOF && exit 1
  This script is intended to be used with GPUs but you have not compiled Kaldi with CUDA
  If you want to use GPUs (and have them), go to src/, and configure and make on a machine
  where "nvcc" is installed.
  EOF
  fi
  
  # The iVector-extraction and feature-dumping parts are the same as the standard
  # nnet3 setup, and you can skip them by setting "--stage 9" if you have already
  # run those things.
  
  gmm_dir=exp/tri3
  ali_dir=exp/tri3_ali_sp
  lats_dir=${ali_dir/ali/lats} # note, this is a search-and-replace from 'ali' to 'lats'
  treedir=exp/chain/tri3_tree
  lang=data/lang_chain
  
  mkdir -p $dir
  
  local/nnet3/run_ivector_common.sh --stage $stage \
    --generate-alignments false \
    --speed-perturb true || exit 1;
  
  if [ $stage -le 9 ]; then
    # Get the alignments as lattices (gives the chain training more freedom).
    # use the same num-jobs as the alignments
    nj=$(cat ${ali_dir}/num_jobs) || exit 1;
    steps/align_fmllr_lats.sh --nj $nj --cmd "$train_cmd" data/train_sp \
      data/lang $gmm_dir $lats_dir
    rm ${lats_dir}/fsts.*.gz # save space
  fi
  
  if [ $stage -le 10 ]; then
    # Create a version of the lang/ directory that has one state per phone in the
    # topo file. [note, it really has two states.. the first one is only repeated
    # once, the second one has zero or more repeats.]
    rm -rf $lang
    cp -r data/lang $lang
    silphonelist=$(cat $lang/phones/silence.csl) || exit 1;
    nonsilphonelist=$(cat $lang/phones/nonsilence.csl) || exit 1;
    # Use our special topology... note that later on may have to tune this
    # topology.
    steps/nnet3/chain/gen_topo.py $nonsilphonelist $silphonelist >$lang/topo
  fi
  
  if [ $stage -le 11 ]; then
    # Build a tree using our new topology.
    steps/nnet3/chain/build_tree.sh --frame-subsampling-factor 3 \
        --cmd "$train_cmd" 4000 data/train_sp $lang $ali_dir $treedir
  fi
  
  if [ $stage -le 12 ]; then
    echo "$0: creating neural net configs";
  
    # create the config files for nnet initialization
    repair_opts=${self_repair_scale:+" --self-repair-scale-nonlinearity $self_repair_scale "}
  
    steps/nnet3/tdnn/make_configs.py \
      $repair_opts \
      --feat-dir data/train_sp_hires \
      --ivector-dir exp/nnet3/ivectors_train_sp \
      --tree-dir $treedir \
      --relu-dim $relu_dim \
      --splice-indexes "-1,0,1 -1,0,1,2 -3,0,3 -3,0,3 -3,0,3 -6,-3,0 0" \
      --use-presoftmax-prior-scale false \
      --xent-regularize $xent_regularize \
      --xent-separate-forward-affine true \
      --include-log-softmax false \
      --final-layer-normalize-target $final_layer_normalize_target \
      $dir/configs || exit 1;
  fi
  
  if [ $stage -le 13 ]; then
    if [[  $(hostname -f) ==  *.clsp.jhu.edu ]]; then
       # spread the egs over various machines.  will help reduce overload of any
       # one machine.
       utils/create_split_dir.pl /export/b{09,10,11,12}/$USER/kaldi-data/egs/tedlium-$(date +'%m_%d_%H_%M')/s5/$dir/egs/storage $dir/egs/storage
    fi
  
    touch $dir/egs/.nodelete
  
   steps/nnet3/chain/train.py --stage $train_stage \
     --cmd "$decode_cmd" \
     --feat.online-ivector-dir exp/nnet3/ivectors_train_sp \
     --feat.cmvn-opts "--norm-means=false --norm-vars=false" \
     --chain.xent-regularize $xent_regularize \
     --chain.leaky-hmm-coefficient 0.1 \
     --chain.l2-regularize 0.00005 \
     --chain.apply-deriv-weights false \
     --chain.lm-opts="--num-extra-lm-states=2000" \
     --egs.stage $get_egs_stage \
     --egs.opts "--frames-overlap-per-eg 0" \
     --egs.chunk-width $frames_per_eg \
     --trainer.num-chunk-per-minibatch $minibatch_size \
     --trainer.frames-per-iter 1500000 \
     --trainer.num-epochs $num_epochs \
     --trainer.optimization.num-jobs-initial $num_jobs_initial \
     --trainer.optimization.num-jobs-final $num_jobs_final \
     --trainer.optimization.initial-effective-lrate $initial_effective_lrate \
     --trainer.optimization.final-effective-lrate $final_effective_lrate \
     --trainer.max-param-change $max_param_change \
     --cleanup.remove-egs $remove_egs \
     --cleanup.preserve-model-interval 20 \
     --feat-dir data/train_sp_hires \
     --tree-dir $treedir \
     --lat-dir $lats_dir \
     --dir $dir || exit 1;
  fi
  
  if [ $stage -le 14 ]; then
    # Note: it might appear that this $lang directory is mismatched, and it is as
    # far as the 'topo' is concerned, but this script doesn't read the 'topo' from
    # the lang directory.
    utils/mkgraph.sh --self-loop-scale 1.0 data/lang_test $dir $dir/graph
  fi
  
  graph_dir=$dir/graph
  if [ $stage -le 15 ]; then
    iter_opts=
    if [ ! -z $decode_iter ]; then
      iter_opts=" --iter $decode_iter "
    fi
  
    for decode_set in dev test; do
      (
      steps/nnet3/decode.sh --acwt 1.0 --post-decode-acwt 10.0 \
        --nj $(wc -l < data/$decode_set/spk2utt) --cmd "$decode_cmd" $iter_opts \
        --online-ivector-dir exp/nnet3/ivectors_${decode_set} \
        --scoring-opts "--min_lmwt 5 --max_lmwt 15" \
        $graph_dir data/${decode_set}_hires $dir/decode_${decode_set}${decode_iter:+_$decode_iter} || exit 1;
  
      steps/lmrescore_const_arpa.sh --cmd "$decode_cmd" \
        data/lang_test data/lang_rescore data/${decode_set}_hires \
        $dir/decode_${decode_set}${decode_iter:+_$decode_iter} \
        $dir/decode_${decode_set}${decode_iter:+_$decode_iter}_rescore || exit 1;
      ) &
    done
  fi
  
  wait