Blame view
egs/tedlium/s5/local/chain/run_tdnn.sh
7.55 KB
8dcb6dfcb first commit |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 |
#!/bin/bash # # This script requires that you have run the toplevel run.sh script in TEDLIUM up to stage 7. # # Results: (Run for x in exp/chain/tdnn/decode*; do [ -d $x ] && grep Sum $x/score_*/*.sys | utils/best_wer.sh; done 2>/dev/null) ## Number of parameters: 6172530 ## %WER 14.1 | 507 17792 | 88.6 7.3 4.1 2.7 14.1 92.9 | 0.075 | exp/chain/tdnn/decode_dev/score_10_0.5/ctm.filt.filt.sys ## %WER 13.3 | 507 17792 | 89.7 6.9 3.4 2.9 13.3 92.1 | 0.000 | exp/chain/tdnn/decode_dev_rescore/score_10_0.0/ctm.filt.filt.sys ## %WER 13.8 | 1155 27512 | 89.4 7.5 3.1 3.2 13.8 87.9 | 0.101 | exp/chain/tdnn/decode_test/score_10_0.0/ctm.filt.filt.sys ## %WER 12.9 | 1155 27512 | 90.1 6.6 3.3 2.9 12.9 86.1 | 0.043 | exp/chain/tdnn/decode_test_rescore/score_10_0.0/ctm.filt.filt.sys # The final WER (rescored WER on the test set) is what we are interested in. # To reproduce the setup used in the paper, set the following variables: # affix=_more_ce # relu_dim=525 # xent_regularize=0.2 # # Results: (Run for x in exp/chain/tdnn_more_ce/decode*; do [ -d $x ] && grep Sum $x/score_*/*.sys | utils/best_wer.sh; done 2>/dev/null) ## Number of parameters: 8758742 ## %WER 14.3 | 507 17792 | 89.0 7.8 3.2 3.3 14.3 93.5 | 0.116 | exp/chain/tdnn_more_ce/decode_dev/score_10_0.0/ctm.filt.filt.sys ## %WER 13.0 | 507 17792 | 90.0 6.9 3.2 2.9 13.0 91.3 | -0.003 | exp/chain/tdnn_more_ce/decode_devv_rescore/score_10_0.0/ctm.filt.filt.sys ## %WER 13.8 | 1155 27512 | 89.1 7.4 3.4 2.9 13.8 87.5 | 0.082 | exp/chain/tdnn_more_ce/decode_test/score_10_0.5/ctm.filt.filt.sys ## %WER 12.8 | 1155 27512 | 90.4 6.6 3.1 3.1 12.8 86.7 | 0.014 | exp/chain/tdnn_more_ce/decode_test_rescore/score_10_0.0/ctm.filt.filt.sys set -uo pipefail # configs for 'chain' affix= stage=0 # After running the entire script once, you can set stage=12 to tune the neural net only. train_stage=-10 get_egs_stage=-10 dir=exp/chain/tdnn decode_iter= # TDNN options # this script uses the new tdnn config generator so it needs a final 0 to reflect that the final layer input has no splicing self_repair_scale=0.00001 # training options num_epochs=4 initial_effective_lrate=0.001 final_effective_lrate=0.0001 max_param_change=2.0 final_layer_normalize_target=0.5 num_jobs_initial=3 num_jobs_final=8 minibatch_size=128 relu_dim=425 frames_per_eg=150 remove_egs=false xent_regularize=0.1 # End configuration section. echo "$0 $@" # Print the command line for logging . ./cmd.sh . ./path.sh . ./utils/parse_options.sh dir=${dir}${affix} if ! cuda-compiled; then cat <<EOF && exit 1 This script is intended to be used with GPUs but you have not compiled Kaldi with CUDA If you want to use GPUs (and have them), go to src/, and configure and make on a machine where "nvcc" is installed. EOF fi # The iVector-extraction and feature-dumping parts are the same as the standard # nnet3 setup, and you can skip them by setting "--stage 9" if you have already # run those things. gmm_dir=exp/tri3 ali_dir=exp/tri3_ali_sp lats_dir=${ali_dir/ali/lats} # note, this is a search-and-replace from 'ali' to 'lats' treedir=exp/chain/tri3_tree lang=data/lang_chain mkdir -p $dir local/nnet3/run_ivector_common.sh --stage $stage \ --generate-alignments false \ --speed-perturb true || exit 1; if [ $stage -le 9 ]; then # Get the alignments as lattices (gives the chain training more freedom). # use the same num-jobs as the alignments nj=$(cat ${ali_dir}/num_jobs) || exit 1; steps/align_fmllr_lats.sh --nj $nj --cmd "$train_cmd" data/train_sp \ data/lang $gmm_dir $lats_dir rm ${lats_dir}/fsts.*.gz # save space fi if [ $stage -le 10 ]; then # Create a version of the lang/ directory that has one state per phone in the # topo file. [note, it really has two states.. the first one is only repeated # once, the second one has zero or more repeats.] rm -rf $lang cp -r data/lang $lang silphonelist=$(cat $lang/phones/silence.csl) || exit 1; nonsilphonelist=$(cat $lang/phones/nonsilence.csl) || exit 1; # Use our special topology... note that later on may have to tune this # topology. steps/nnet3/chain/gen_topo.py $nonsilphonelist $silphonelist >$lang/topo fi if [ $stage -le 11 ]; then # Build a tree using our new topology. steps/nnet3/chain/build_tree.sh --frame-subsampling-factor 3 \ --cmd "$train_cmd" 4000 data/train_sp $lang $ali_dir $treedir fi if [ $stage -le 12 ]; then echo "$0: creating neural net configs"; # create the config files for nnet initialization repair_opts=${self_repair_scale:+" --self-repair-scale-nonlinearity $self_repair_scale "} steps/nnet3/tdnn/make_configs.py \ $repair_opts \ --feat-dir data/train_sp_hires \ --ivector-dir exp/nnet3/ivectors_train_sp \ --tree-dir $treedir \ --relu-dim $relu_dim \ --splice-indexes "-1,0,1 -1,0,1,2 -3,0,3 -3,0,3 -3,0,3 -6,-3,0 0" \ --use-presoftmax-prior-scale false \ --xent-regularize $xent_regularize \ --xent-separate-forward-affine true \ --include-log-softmax false \ --final-layer-normalize-target $final_layer_normalize_target \ $dir/configs || exit 1; fi if [ $stage -le 13 ]; then if [[ $(hostname -f) == *.clsp.jhu.edu ]]; then # spread the egs over various machines. will help reduce overload of any # one machine. utils/create_split_dir.pl /export/b{09,10,11,12}/$USER/kaldi-data/egs/tedlium-$(date +'%m_%d_%H_%M')/s5/$dir/egs/storage $dir/egs/storage fi touch $dir/egs/.nodelete steps/nnet3/chain/train.py --stage $train_stage \ --cmd "$decode_cmd" \ --feat.online-ivector-dir exp/nnet3/ivectors_train_sp \ --feat.cmvn-opts "--norm-means=false --norm-vars=false" \ --chain.xent-regularize $xent_regularize \ --chain.leaky-hmm-coefficient 0.1 \ --chain.l2-regularize 0.00005 \ --chain.apply-deriv-weights false \ --chain.lm-opts="--num-extra-lm-states=2000" \ --egs.stage $get_egs_stage \ --egs.opts "--frames-overlap-per-eg 0" \ --egs.chunk-width $frames_per_eg \ --trainer.num-chunk-per-minibatch $minibatch_size \ --trainer.frames-per-iter 1500000 \ --trainer.num-epochs $num_epochs \ --trainer.optimization.num-jobs-initial $num_jobs_initial \ --trainer.optimization.num-jobs-final $num_jobs_final \ --trainer.optimization.initial-effective-lrate $initial_effective_lrate \ --trainer.optimization.final-effective-lrate $final_effective_lrate \ --trainer.max-param-change $max_param_change \ --cleanup.remove-egs $remove_egs \ --cleanup.preserve-model-interval 20 \ --feat-dir data/train_sp_hires \ --tree-dir $treedir \ --lat-dir $lats_dir \ --dir $dir || exit 1; fi if [ $stage -le 14 ]; then # Note: it might appear that this $lang directory is mismatched, and it is as # far as the 'topo' is concerned, but this script doesn't read the 'topo' from # the lang directory. utils/mkgraph.sh --self-loop-scale 1.0 data/lang_test $dir $dir/graph fi graph_dir=$dir/graph if [ $stage -le 15 ]; then iter_opts= if [ ! -z $decode_iter ]; then iter_opts=" --iter $decode_iter " fi for decode_set in dev test; do ( steps/nnet3/decode.sh --acwt 1.0 --post-decode-acwt 10.0 \ --nj $(wc -l < data/$decode_set/spk2utt) --cmd "$decode_cmd" $iter_opts \ --online-ivector-dir exp/nnet3/ivectors_${decode_set} \ --scoring-opts "--min_lmwt 5 --max_lmwt 15" \ $graph_dir data/${decode_set}_hires $dir/decode_${decode_set}${decode_iter:+_$decode_iter} || exit 1; steps/lmrescore_const_arpa.sh --cmd "$decode_cmd" \ data/lang_test data/lang_rescore data/${decode_set}_hires \ $dir/decode_${decode_set}${decode_iter:+_$decode_iter} \ $dir/decode_${decode_set}${decode_iter:+_$decode_iter}_rescore || exit 1; ) & done fi wait |