Blame view
egs/tedlium/s5/local/nnet/run_dnn_bn.sh
7.81 KB
8dcb6dfcb first commit |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 |
#!/bin/bash # # Based mostly on the Switchboard recipe. The training database is TED-LIUM, # it consists of TED talks with cleaned automatic transcripts: # # http://www-lium.univ-lemans.fr/en/content/ted-lium-corpus # http://www.openslr.org/resources (Mirror). # # The data is distributed under 'Creative Commons BY-NC-ND 3.0' license, # which allow free non-commercial use, while only a citation is required. # # Copyright 2014 Nickolay V. Shmyrev # 2015 Brno University of Technology (Author: Karel Vesely) # 2015 Alex Glubshev # Apache 2.0 # . ./cmd.sh . ./path.sh nj=32 njdec=11 njfea=10 # label, exp=BN # source data, ali_src=exp/tri3_ali graph_src=exp/tri3/graph # fbank features test=data-fbank/test train=data-fbank/train test_original=data/test train_original=data/train # bn features, test_bn=data-fbank-${exp}-bn/test train_bn=data-fbank-${exp}-bn/train # fmllr features, test_bn_fmllr=data-fbank-${exp}-bn-fmllr/test train_bn_fmllr=data-fbank-${exp}-bn-fmllr/train stage=0 . utils/parse_options.sh # accept options # Make the kaldi FBANK+PITCH features, [ ! -e $test ] && if [ $stage -le 0 ]; then # Test set utils/copy_data_dir.sh $test_original $test || exit 1; rm $test/{cmvn,feats}.scp steps/make_fbank_pitch.sh --nj $njfea --cmd "$train_cmd" \ $test $test/log $test/data || exit 1; steps/compute_cmvn_stats.sh $test $test/log $test/data || exit 1; # Train set utils/copy_data_dir.sh $train_original $train || exit 1; rm $train/{cmvn,feats}.scp steps/make_fbank_pitch.sh --nj $njfea --cmd "$train_cmd" \ $train $train/log $train/data || exit 1; steps/compute_cmvn_stats.sh $train $train/log $train/data || exit 1; # Split to training 90%, cv 10% utils/subset_data_dir_tr_cv.sh $train ${train}_tr90 ${train}_cv10 || exit 1; fi # Train the bottleneck network, lang=data/lang_test if [ $stage -le 1 ]; then dir=exp/dnn8a_${exp}_bn-feat ali=$ali_src $cuda_cmd $dir/log/train_nnet.log \ steps/nnet/train.sh --hid-layers 2 --hid-dim 1500 --bn-dim 40 \ --cmvn-opts "--norm-means=true --norm-vars=false" --feat-type traps \ --splice 5 --traps-dct-basis 6 --learn-rate 0.008 \ ${train}_tr90 ${train}_cv10 $lang $ali $ali $dir || exit 1 # Decode test, steps/nnet/decode.sh --nj $njdec --cmd "$decode_cmd" --config conf/decode_dnn.config --acwt 0.10 \ $graph_src $test $dir/decode_test || exit 1 fi # Store the bottleneck features, if [ $stage -le 2 ]; then dir=exp/dnn8a_${exp}_bn-feat # dev steps/nnet/make_bn_feats.sh --nj $njfea --cmd "$train_cmd" $test_bn $test $dir $test_bn/log $test_bn/data || exit 1 steps/compute_cmvn_stats.sh $test_bn $test_bn/log $test_bn/data || exit 1; # train steps/nnet/make_bn_feats.sh --nj $njfea --cmd "$train_cmd" $train_bn $train $dir $train_bn/log $train_bn/data || exit 1 steps/compute_cmvn_stats.sh $train_bn $train_bn/log $train_bn/data || exit 1; fi # Train GMM on bottleneck features, lang_test=data/lang_test if [ $stage -le 3 ]; then dir=exp/dnn8b_${exp}_bn-gmm # Train, # gmm on bn features, no cmvn, no lda-mllt, steps/train_deltas.sh --power 0.5 --boost-silence 1.5 --cmd "$train_cmd" \ --delta-opts "--delta-order=0" \ --cmvn-opts "--norm-means=false --norm-vars=false" \ --beam 20 --retry-beam 80 \ 5000 80000 $train_bn $lang $ali_src $dir || exit 1 # Decode, utils/mkgraph.sh $lang_test $dir $dir/graph || exit 1 steps/decode.sh --nj $njdec --cmd "$decode_cmd" \ --acwt 0.05 --beam 15.0 --lattice-beam 8.0 \ $dir/graph $test_bn $dir/decode_$(basename $test_bn) || exit 1 # Align, steps/align_fmllr.sh --boost-silence 1.5 --nj $nj --cmd "$train_cmd" \ --beam 20 --retry-beam 80 \ $train_bn $lang $dir ${dir}_ali || exit 1; fi # Train SAT-adapted GMM on bottleneck features, if [ $stage -le 4 ]; then dir=exp/dnn8c_${exp}_fmllr-gmm ali=exp/dnn8b_${exp}_bn-gmm_ali # Train, # fmllr-gmm system on bottleneck features, # - no cmvn, put fmllr to the features directly (no lda), # - note1 : we don't need cmvn, similar effect has diagonal of fmllr transform, # - note2 : lda+mllt was causing a small hit <0.5%, steps/train_sat.sh --power 0.5 --boost-silence 1.5 --cmd "$train_cmd" \ --beam 20 --retry-beam 80 \ 5000 80000 $train_bn $lang $ali $dir || exit 1 # Decode, utils/mkgraph.sh $lang_test $dir $dir/graph || exit 1; steps/decode_fmllr.sh --nj $njdec --cmd "$decode_cmd" \ --acwt 0.05 --beam 15.0 --lattice-beam 8.0 \ $dir/graph $test_bn $dir/decode_$(basename $test_bn) || exit 1 # Align, steps/align_fmllr.sh --boost-silence 1.5 --nj $nj --cmd "$train_cmd" \ --beam 20 --retry-beam 80 \ $train_bn $lang $dir ${dir}_ali || exit 1; fi # Store the bottleneck-FMLLR features, gmm=exp/dnn8c_${exp}_fmllr-gmm # fmllr-feats, dnn-targets, graph=$gmm/graph if [ $stage -le 5 ]; then # Dev_set steps/nnet/make_fmllr_feats.sh --nj $njfea --cmd "$train_cmd" \ --transform-dir $gmm/decode_$(basename $test_bn) \ $test_bn_fmllr $test_bn $gmm $test_bn_fmllr/log $test_bn_fmllr/data || exit 1; # Training set steps/nnet/make_fmllr_feats.sh --nj $njfea --cmd "$train_cmd --max-jobs-run 10" \ --transform-dir ${gmm}_ali \ $train_bn_fmllr $train_bn $gmm $train_bn_fmllr/log $train_bn_fmllr/data || exit 1; # Split the training set utils/subset_data_dir_tr_cv.sh --cv-spk-percent 10 $train_bn_fmllr ${train_bn_fmllr}_tr90 ${train_bn_fmllr}_cv10 fi #------------------------------------------------------------------------------------ # Pre-train stack of RBMs (6 layers, 2048 units), if [ $stage -le 6 ]; then dir=exp/dnn8d_${exp}_pretrain-dbn; mkdir -p $dir # Create input transform, splice 13 frames [ -10 -5..+5 +10 ], echo "<Splice> <InputDim> 40 <OutputDim> 520 <BuildVector> -10 -5:1:5 10 </BuildVector>" >$dir/proto.main $cuda_cmd $dir/log/pretrain_dbn.log \ steps/nnet/pretrain_dbn.sh --feature-transform-proto $dir/proto.main \ $train_bn_fmllr $dir || exit 1 fi #------------------------------------------------------------------------------------ # Train the DNN optimizing cross-entropy, if [ $stage -le 7 ]; then dir=exp/dnn8e_${exp}_pretrain-dbn_dnn ali=${gmm}_ali feature_transform=exp/dnn8d_${exp}_pretrain-dbn/final.feature_transform # re-use dbn=exp/dnn8d_${exp}_pretrain-dbn/6.dbn # re-use # Train $cuda_cmd $dir/log/train_nnet.log \ steps/nnet/train.sh --feature-transform $feature_transform --dbn $dbn --hid-layers 0 --learn-rate 0.008 \ ${train_bn_fmllr}_tr90 ${train_bn_fmllr}_cv10 $lang $ali $ali $dir || exit 1; # Decode test steps/nnet/decode.sh --nj $njdec --cmd "$decode_cmd" --config conf/decode_dnn.config --acwt 0.10 \ $graph $test_bn_fmllr $dir/decode_$(basename $test_bn_fmllr) || exit 1 fi #------------------------------------------------------------------------------------ # Finally we optimize sMBR criterion, we do Stochastic-GD with per-utterance updates, dir=exp/dnn8f_${exp}_pretrain-dbn_dnn_smbr srcdir=exp/dnn8e_${exp}_pretrain-dbn_dnn acwt=0.1 # if [ $stage -le 8 ]; then # Generate lattices and alignments steps/nnet/align.sh --nj $nj --cmd "$train_cmd" \ $train_bn_fmllr $lang $srcdir ${srcdir}_ali || exit 1; steps/nnet/make_denlats.sh --nj $nj --cmd "$decode_cmd" --acwt $acwt \ $train_bn_fmllr $lang $srcdir ${srcdir}_denlats || exit 1; fi if [ $stage -le 9 ]; then # Do 4 epochs of sMBR (leaving out all silence frames and compensating insertions), steps/nnet/train_mpe.sh --cmd "$cuda_cmd" --num-iters 4 --acwt $acwt \ --do-smbr true --exclude-silphones true --one-silence-class true \ $train_bn_fmllr $lang $srcdir ${srcdir}_ali ${srcdir}_denlats $dir || exit 1 # Decode test, for ITER in 1 2 3 4; do steps/nnet/decode.sh --nj $njdec --cmd "$decode_cmd" --config conf/decode_dnn.config --acwt $acwt \ --nnet $dir/${ITER}.nnet \ $graph $test_bn_fmllr $dir/decode_$(basename $test_bn_fmllr)_it${ITER} || exit 1 done fi echo $0 successs. exit 0 |