Blame view
egs/tedlium/s5/local/nnet3/run_ivector_common.sh
4.69 KB
8dcb6dfcb first commit |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 |
#!/bin/bash # This is based on: # swbd/s5c/local/nnet3/run_ivector_common.sh and # tedlium/s5/local/online/run_nnet2_ms_perturbed.sh # see the chain docs for general direction on what training is doing! set -uo pipefail stage=1 generate_alignments=true # false if doing ctc training . ./cmd.sh . ./path.sh . ./utils/parse_options.sh mkdir -p exp/nnet3 # perturb the data train_set=train if [ $stage -le 1 ]; then #Although the nnet will be trained by high resolution data, we still have to perturb the normal data to get the alignment utils/perturb_data_dir_speed.sh 0.9 data/${train_set} data/temp1 utils/perturb_data_dir_speed.sh 1.1 data/${train_set} data/temp2 utils/combine_data.sh data/${train_set}_tmp data/temp1 data/temp2 utils/validate_data_dir.sh --no-feats data/${train_set}_tmp rm -r data/temp1 data/temp2 mfccdir=mfcc_perturbed steps/make_mfcc.sh --cmd "$train_cmd" --nj 50 \ data/${train_set}_tmp exp/make_mfcc/${train_set}_tmp $mfccdir || exit 1; steps/compute_cmvn_stats.sh data/${train_set}_tmp exp/make_mfcc/${train_set}_tmp $mfccdir || exit1; utils/fix_data_dir.sh data/${train_set}_tmp utils/copy_data_dir.sh --spk-prefix sp1.0- --utt-prefix sp1.0- data/${train_set} data/temp0 utils/combine_data.sh data/${train_set}_sp data/${train_set}_tmp data/temp0 utils/fix_data_dir.sh data/${train_set}_sp rm -r data/temp0 data/${train_set}_tmp fi train_set_sp=${train_set}_sp if [ $stage -le 2 ] && [ "$generate_alignments" == "true" ]; then # obtain the alignment of the pertubed data steps/align_fmllr.sh --nj 100 --cmd "$train_cmd" \ data/${train_set_sp} data/lang_nosp exp/tri3 exp/tri3_ali_sp || exit 1 fi if [ $stage -le 3 ]; then mfccdir=mfcc_hires if [[ $(hostname -f) == *.clsp.jhu.edu ]] && [ ! -d $mfccdir/storage ]; then date=$(date +'%m_%d_%H_%M') utils/create_split_dir.pl /export/b{09,10,11,12}/$USER/kaldi-data/egs/tedlium-$date/s5/$mfccdir/storage $mfccdir/storage fi for dataset in $train_set $train_set_sp; do data_dir=data/${dataset}_hires utils/copy_data_dir.sh data/$dataset $data_dir # this next section does volume perturbation on the data. cat $data_dir/wav.scp | python -c " import sys, os, subprocess, re, random random.seed(0) scale_low = 1.0/8 scale_high = 2.0 for line in sys.stdin.readlines(): if len(line.strip()) == 0: continue print '{0} sox --vol {1} -t wav - -t wav - |'.format(line.strip(), random.uniform(scale_low, scale_high)) "| sort -k1,1 -u > $data_dir/wav.scp_scaled || exit 1; mv $data_dir/wav.scp_scaled $data_dir/wav.scp steps/make_mfcc.sh --nj 70 --mfcc-config conf/mfcc_hires.conf \ $data_dir exp/make_hires/$dataset $mfccdir steps/compute_cmvn_stats.sh $data_dir exp/make_hires/$dataset $mfccdir utils/fix_data_dir.sh $data_dir # remove segments with problems done for dataset in dev test; do data_dir=data/${dataset}_hires utils/copy_data_dir.sh data/$dataset $data_dir steps/make_mfcc.sh --nj 70 --mfcc-config conf/mfcc_hires.conf \ $data_dir exp/make_hires/$dataset $mfccdir steps/compute_cmvn_stats.sh $data_dir exp/make_hires/$dataset $mfccdir utils/fix_data_dir.sh $data_dir # remove segments with problems done fi # ivector extractor training if [ $stage -le 5 ]; then # We need to build a small system just because we need the LDA+MLLT transform # to train the diag-UBM on top of. We use --num-iters 13 because after we get # the transform (12th iter is the last), any further training is pointless. # this decision is based on fisher_english # Note: We do NOT use speed-perturbed data in this step. steps/train_lda_mllt.sh --cmd "$train_cmd" --num-iters 13 \ --splice-opts "--left-context=3 --right-context=3" \ 5000 10000 data/${train_set}_hires \ data/lang_nosp exp/tri3_ali exp/nnet3/tri3b fi if [ $stage -le 6 ]; then steps/online/nnet2/train_diag_ubm.sh --cmd "$train_cmd" --nj 30 --num-frames 700000 \ data/${train_set_sp}_hires 512 exp/nnet3/tri3b exp/nnet3/diag_ubm fi if [ $stage -le 7 ]; then steps/online/nnet2/train_ivector_extractor.sh --cmd "$train_cmd" --nj 10 \ data/${train_set_sp}_hires exp/nnet3/diag_ubm exp/nnet3/extractor || exit 1; fi if [ $stage -le 8 ]; then steps/online/nnet2/copy_data_dir.sh --utts-per-spk-max 2 data/${train_set_sp}_hires \ data/${train_set_sp}_hires_max2 steps/online/nnet2/extract_ivectors_online.sh --cmd "$train_cmd" --nj 30 \ data/${train_set_sp}_hires_max2 exp/nnet3/extractor exp/nnet3/ivectors_${train_set_sp} || exit 1 for data_set in dev test; do steps/online/nnet2/extract_ivectors_online.sh --cmd "$train_cmd" --nj 8 \ data/${data_set}_hires exp/nnet3/extractor exp/nnet3/ivectors_${data_set} || exit 1; done fi |