Blame view

egs/tedlium/s5/local/nnet3/run_ivector_common.sh 4.69 KB
8dcb6dfcb   Yannick Estève   first commit
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
  #!/bin/bash
  
  # This is based on:
  # swbd/s5c/local/nnet3/run_ivector_common.sh and
  # tedlium/s5/local/online/run_nnet2_ms_perturbed.sh
  # see the chain docs for general direction on what training is doing!
  
  set -uo pipefail
  stage=1
  generate_alignments=true # false if doing ctc training
  
  . ./cmd.sh
  . ./path.sh
  . ./utils/parse_options.sh
  
  mkdir -p exp/nnet3 
  # perturb the data
  train_set=train
  if [ $stage -le 1 ]; then
    #Although the nnet will be trained by high resolution data, we still have to perturb the normal data to get the alignment
  
    utils/perturb_data_dir_speed.sh 0.9 data/${train_set} data/temp1
    utils/perturb_data_dir_speed.sh 1.1 data/${train_set} data/temp2
    utils/combine_data.sh data/${train_set}_tmp data/temp1 data/temp2
    utils/validate_data_dir.sh --no-feats data/${train_set}_tmp
    rm -r data/temp1 data/temp2
  
    mfccdir=mfcc_perturbed
    steps/make_mfcc.sh --cmd "$train_cmd" --nj 50 \
      data/${train_set}_tmp exp/make_mfcc/${train_set}_tmp $mfccdir || exit 1;
    steps/compute_cmvn_stats.sh data/${train_set}_tmp exp/make_mfcc/${train_set}_tmp $mfccdir || exit1;
    utils/fix_data_dir.sh data/${train_set}_tmp
      
    utils/copy_data_dir.sh --spk-prefix sp1.0- --utt-prefix sp1.0- data/${train_set} data/temp0
    utils/combine_data.sh data/${train_set}_sp data/${train_set}_tmp data/temp0
    utils/fix_data_dir.sh data/${train_set}_sp
    rm -r data/temp0 data/${train_set}_tmp
  fi
  
  train_set_sp=${train_set}_sp
  
  if [ $stage -le 2 ] && [ "$generate_alignments" == "true" ]; then
    # obtain the alignment of the pertubed data
    steps/align_fmllr.sh --nj 100 --cmd "$train_cmd" \
      data/${train_set_sp} data/lang_nosp exp/tri3 exp/tri3_ali_sp || exit 1
  fi
  
  if [ $stage -le 3 ]; then
    
    mfccdir=mfcc_hires
    if [[ $(hostname -f) == *.clsp.jhu.edu ]] && [ ! -d $mfccdir/storage ]; then
      date=$(date +'%m_%d_%H_%M')
      utils/create_split_dir.pl /export/b{09,10,11,12}/$USER/kaldi-data/egs/tedlium-$date/s5/$mfccdir/storage $mfccdir/storage
    fi
  
    for dataset in $train_set $train_set_sp; do
      data_dir=data/${dataset}_hires
      utils/copy_data_dir.sh data/$dataset $data_dir
  
        # this next section does volume perturbation on the data.
      cat $data_dir/wav.scp | python -c "
  import sys, os, subprocess, re, random
  random.seed(0)
  scale_low = 1.0/8
  scale_high = 2.0
  for line in sys.stdin.readlines():
    if len(line.strip()) == 0:
      continue
    print '{0} sox --vol {1} -t wav - -t wav - |'.format(line.strip(), random.uniform(scale_low, scale_high))
  "| sort -k1,1 -u  > $data_dir/wav.scp_scaled || exit 1;
      mv $data_dir/wav.scp_scaled $data_dir/wav.scp
  
      steps/make_mfcc.sh --nj 70 --mfcc-config conf/mfcc_hires.conf \
        $data_dir exp/make_hires/$dataset $mfccdir
      steps/compute_cmvn_stats.sh $data_dir exp/make_hires/$dataset $mfccdir
      utils/fix_data_dir.sh $data_dir # remove segments with problems
    done
  
    for dataset in dev test; do
      data_dir=data/${dataset}_hires
      utils/copy_data_dir.sh data/$dataset $data_dir
  
      steps/make_mfcc.sh --nj 70 --mfcc-config conf/mfcc_hires.conf \
        $data_dir exp/make_hires/$dataset $mfccdir
      steps/compute_cmvn_stats.sh $data_dir exp/make_hires/$dataset $mfccdir
      utils/fix_data_dir.sh $data_dir # remove segments with problems
    done
  fi
  
  # ivector extractor training
  if [ $stage -le 5 ]; then
    # We need to build a small system just because we need the LDA+MLLT transform
    # to train the diag-UBM on top of.  We use --num-iters 13 because after we get
    # the transform (12th iter is the last), any further training is pointless.
    # this decision is based on fisher_english
    # Note: We do NOT use speed-perturbed data in this step.
    steps/train_lda_mllt.sh --cmd "$train_cmd" --num-iters 13 \
      --splice-opts "--left-context=3 --right-context=3" \
      5000 10000 data/${train_set}_hires \
      data/lang_nosp exp/tri3_ali exp/nnet3/tri3b
  fi
  
  if [ $stage -le 6 ]; then
    steps/online/nnet2/train_diag_ubm.sh --cmd "$train_cmd" --nj 30 --num-frames 700000 \
      data/${train_set_sp}_hires 512 exp/nnet3/tri3b exp/nnet3/diag_ubm
  fi
  
  if [ $stage -le 7 ]; then
      steps/online/nnet2/train_ivector_extractor.sh --cmd "$train_cmd" --nj 10 \
          data/${train_set_sp}_hires exp/nnet3/diag_ubm exp/nnet3/extractor || exit 1;
  fi
  
  if [ $stage -le 8 ]; then
    
      steps/online/nnet2/copy_data_dir.sh --utts-per-spk-max 2 data/${train_set_sp}_hires \
          data/${train_set_sp}_hires_max2
  
      steps/online/nnet2/extract_ivectors_online.sh --cmd "$train_cmd" --nj 30 \
          data/${train_set_sp}_hires_max2 exp/nnet3/extractor exp/nnet3/ivectors_${train_set_sp} || exit 1
  
      for data_set in dev test; do
        steps/online/nnet2/extract_ivectors_online.sh --cmd "$train_cmd" --nj 8 \
          data/${data_set}_hires exp/nnet3/extractor exp/nnet3/ivectors_${data_set} || exit 1;
      done
  fi