Blame view
egs/tedlium/s5/local/nnet3/run_tdnn.sh
4.17 KB
8dcb6dfcb first commit |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 |
#!/bin/bash # this is the standard "tdnn" system, built in nnet3; it's what we use to # call multi-splice. # Results (2 epochs): # Number of parameters: 6056880 # %WER 15.3 | 507 17792 | 87.4 9.0 3.6 2.7 15.3 90.1 | -0.081 | exp/nnet3/tdnn_sp/decode_dev/score_10_0.5/ctm.filt.filt.sys # %WER 13.9 | 507 17792 | 88.4 8.0 3.6 2.3 13.9 85.8 | -0.164 | exp/nnet3/tdnn_sp/decode_dev_rescore/score_10_0.5/ctm.filt.filt.sys # %WER 13.8 | 1155 27512 | 88.5 8.7 2.7 2.3 13.8 84.2 | -0.076 | exp/nnet3/tdnn_sp/decode_test/score_10_0.0/ctm.filt.filt.sys # %WER 12.5 | 1155 27512 | 89.6 7.7 2.6 2.1 12.5 81.5 | -0.133 | exp/nnet3/tdnn_sp/decode_test_rescore/score_10_0.0/ctm.filt.filt.sys # 4 epochs # %WER 14.6 | 507 17792 | 87.9 8.7 3.4 2.5 14.6 88.6 | -0.111 | exp/nnet3/tdnn/decode_dev/score_10_0.5/ctm.filt.filt.sys # %WER 13.2 | 507 17792 | 89.4 7.7 2.9 2.6 13.2 85.0 | -0.170 | exp/nnet3/tdnn/decode_dev_rescore/score_10_0.0/ctm.filt.filt.sys # %WER 13.5 | 1155 27512 | 88.7 8.5 2.7 2.3 13.5 83.6 | -0.110 | exp/nnet3/tdnn/decode_test/score_10_0.0/ctm.filt.filt.sys # %WER 12.1 | 1155 27512 | 89.9 7.5 2.6 2.1 12.1 80.3 | -0.178 | exp/nnet3/tdnn/decode_test_rescore/score_10_0.0/ctm.filt.filt.sys # At this script level we don't support not running on GPU, as it would be painfully slow. # If you want to run without GPU you'd have to call train_tdnn.sh with --gpu false, # --num-threads 16 and --minibatch-size 128. stage=1 affix= train_stage=-10 common_egs_dir= reporting_email= remove_egs=true decode_iter= . ./cmd.sh . ./path.sh . ./utils/parse_options.sh if ! cuda-compiled; then cat <<EOF && exit 1 This script is intended to be used with GPUs but you have not compiled Kaldi with CUDA If you want to use GPUs (and have them), go to src/, and configure and make on a machine where "nvcc" is installed. EOF fi dir=exp/nnet3/tdnn dir=$dir${affix:+_$affix} train_set=train_sp #_sp stands for speed-perturbed. This is hard-coded to speed # pertub data. ali_dir=exp/tri3_ali_sp local/nnet3/run_ivector_common.sh --stage $stage --generate-alignments true || exit 1; if [ $stage -le 9 ]; then echo "$0: creating neural net configs"; # create the config files for nnet initialization python steps/nnet3/tdnn/make_configs.py \ --feat-dir data/${train_set}_hires \ --ivector-dir exp/nnet3/ivectors_${train_set} \ --ali-dir $ali_dir \ --relu-dim 500 \ --splice-indexes "-1,0,1 -1,0,1,2 -3,0,3 -3,0,3 -3,0,3 -6,-3,0" \ --use-presoftmax-prior-scale true \ $dir/configs || exit 1; fi if [ $stage -le 10 ]; then if [[ $(hostname -f) == *.clsp.jhu.edu ]] && [ ! -d $dir/egs/storage ]; then utils/create_split_dir.pl \ /export/b{09,10,11,12}/$USER/kaldi-data/egs/tedlium-$(date +'%m_%d_%H_%M')/s5/$dir/egs/storage $dir/egs/storage fi steps/nnet3/train_dnn.py --stage=$train_stage \ --cmd="$decode_cmd" \ --feat.online-ivector-dir exp/nnet3/ivectors_${train_set} \ --feat.cmvn-opts="--norm-means=false --norm-vars=false" \ --trainer.num-epochs 2 \ --trainer.optimization.num-jobs-initial 3 \ --trainer.optimization.num-jobs-final 8 \ --trainer.optimization.initial-effective-lrate 0.0015 \ --trainer.optimization.final-effective-lrate 0.00015 \ --egs.dir "$common_egs_dir" \ --cleanup.remove-egs $remove_egs \ --cleanup.preserve-model-interval 20 \ --feat-dir=data/${train_set}_hires \ --ali-dir $ali_dir \ --lang data/lang \ --reporting.email="$reporting_email" \ --dir=$dir || exit 1; fi graph_dir=exp/tri3/graph if [ $stage -le 11 ]; then iter_opts= if [ ! -z $decode_iter ]; then iter_opts=" --iter $decode_iter " fi for decode_set in dev test; do ( steps/nnet3/decode.sh \ --nj $(wc -l < data/$decode_set/spk2utt) --cmd "$decode_cmd" $iter_opts \ --online-ivector-dir exp/nnet3/ivectors_${decode_set} \ $graph_dir data/${decode_set}_hires $dir/decode_${decode_set}${decode_iter:+_$decode_iter} || exit 1; steps/lmrescore_const_arpa.sh --cmd "$decode_cmd" \ data/lang_test data/lang_rescore data/${decode_set}_hires \ $dir/decode_${decode_set}${decode_iter:+_$decode_iter} \ $dir/decode_${decode_set}${decode_iter:+_$decode_iter}_rescore || exit 1; ) & done fi wait; |