Blame view
egs/tedlium/s5/local/online/run_nnet2_common.sh
3.56 KB
8dcb6dfcb first commit |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 |
#!/bin/bash # this script contains some common (shared) parts of the run_nnet*.sh scripts. . ./cmd.sh stage=0 set -e . ./cmd.sh . ./path.sh . ./utils/parse_options.sh if [ $stage -le 1 ]; then # Create high-resolution MFCC features (with 40 cepstra instead of 13). # this shows how you can split across multiple file-systems. we'll split the # MFCC dir across multiple locations. You might want to be careful here, if you # have multiple copies of Kaldi checked out and run the same recipe, not to let # them overwrite each other. mfccdir=mfcc if [[ $(hostname -f) == *.clsp.jhu.edu ]] && [ ! -d $mfccdir/storage ]; then utils/create_split_dir.pl /export/b0{1,2,3,4}/$USER/kaldi-data/egs/tedlium-$(date +'%m_%d_%H_%M')/s5/$mfccdir/storage $mfccdir/storage fi for datadir in train dev test; do utils/copy_data_dir.sh data/$datadir data/${datadir}_hires if [ "$datadir" == "train" ]; then dir=data/train_hires cat $dir/wav.scp | python -c " import sys, os, subprocess, re, random scale_low = 1.0/8 scale_high = 2.0 for line in sys.stdin.readlines(): if len(line.strip()) == 0: continue print '{0} sox --vol {1} -t wav - -t wav - |'.format(line.strip(), random.uniform(scale_low, scale_high)) "| sort -k1,1 -u > $dir/wav.scp_scaled || exit 1; mv $dir/wav.scp $dir/wav.scp_nonorm mv $dir/wav.scp_scaled $dir/wav.scp fi steps/make_mfcc.sh --nj 70 --mfcc-config conf/mfcc_hires.conf \ --cmd "$train_cmd" data/${datadir}_hires exp/make_hires/$datadir $mfccdir || exit 1; steps/compute_cmvn_stats.sh data/${datadir}_hires exp/make_hires/$datadir $mfccdir || exit 1; done fi if [ $stage -le 2 ]; then # Train a system just for its LDA+MLLT transform. We use --num-iters 13 # because after we get the transform (12th iter is the last), any further # training is pointless. steps/train_lda_mllt.sh --cmd "$train_cmd" --num-iters 13 \ --realign-iters "" \ --splice-opts "--left-context=3 --right-context=3" \ 5000 10000 data/train_hires data/lang \ exp/tri3_ali exp/nnet2_online/tri4 fi if [ $stage -le 3 ]; then mkdir -p exp/nnet2_online steps/online/nnet2/train_diag_ubm.sh --cmd "$train_cmd" --nj 30 --num-frames 700000 \ data/train_hires 512 exp/nnet2_online/tri4 exp/nnet2_online/diag_ubm fi if [ $stage -le 4 ]; then # iVector extractors can in general be sensitive to the amount of data, but # this one has a fairly small dim (defaults to 100) steps/online/nnet2/train_ivector_extractor.sh --cmd "$train_cmd" --nj 10 \ data/train_hires exp/nnet2_online/diag_ubm exp/nnet2_online/extractor || exit 1; fi if [ $stage -le 5 ]; then ivectordir=exp/nnet2_online/ivectors_train_hires if [[ $(hostname -f) == *.clsp.jhu.edu ]] && [ ! -d $ivectordir/storage ]; then utils/create_split_dir.pl /export/b0{1,2,3,4}/$USER/kaldi-data/egs/tedlium-$(date +'%m_%d_%H_%M')/s5/$ivectordir/storage $ivectordir/storage fi # We extract iVectors on all the train data, which will be what we train the # system on. With --utts-per-spk-max 2, the script. pairs the utterances # into twos, and treats each of these pairs as one speaker. Note that these # are extracted 'online'. # having a larger number of speakers is helpful for generalization, and to # handle per-utterance decoding well (iVector starts at zero). steps/online/nnet2/copy_data_dir.sh --utts-per-spk-max 2 data/train_hires data/train_hires_max2 steps/online/nnet2/extract_ivectors_online.sh --cmd "$train_cmd" --nj 30 \ data/train_hires_max2 exp/nnet2_online/extractor exp/nnet2_online/ivectors_train_hires || exit 1; fi exit 0; |