Blame view
egs/wsj/s5/local/nnet3/tuning/run_tdnn_lstm_1a.sh
11.2 KB
8dcb6dfcb first commit |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 |
#!/bin/bash # run_tdnn_lstm_1a.sh is a TDNN+LSTM system. Compare with the TDNN # system in run_tdnn_1a.sh. Configuration is similar to # the same-named script run_tdnn_lstm_1a.sh in # egs/tedlium/s5_r2/local/nnet3/tuning. # It's a little better than the TDNN-only script on dev93, a little # worse on eval92. # steps/info/nnet3_dir_info.pl exp/nnet3/tdnn_lstm1a_sp # exp/nnet3/tdnn_lstm1a_sp: num-iters=102 nj=3..10 num-params=8.8M dim=40+100->3413 combine=-0.55->-0.54 loglike:train/valid[67,101,combined]=(-0.63,-0.55,-0.55/-0.71,-0.63,-0.63) accuracy:train/valid[67,101,combined]=(0.80,0.82,0.82/0.76,0.78,0.78) # local/nnet3/compare_wer.sh --looped --online exp/nnet3/tdnn1a_sp exp/nnet3/tdnn_lstm1a_sp 2>/dev/null # local/nnet3/compare_wer.sh --looped --online exp/nnet3/tdnn1a_sp exp/nnet3/tdnn_lstm1a_sp # System tdnn1a_sp tdnn_lstm1a_sp #WER dev93 (tgpr) 9.18 8.54 # [looped:] 8.54 # [online:] 8.57 #WER dev93 (tg) 8.59 8.25 # [looped:] 8.21 # [online:] 8.34 #WER dev93 (big-dict,tgpr) 6.45 6.24 # [looped:] 6.28 # [online:] 6.40 #WER dev93 (big-dict,fg) 5.83 5.70 # [looped:] 5.70 # [online:] 5.77 #WER eval92 (tgpr) 6.15 6.52 # [looped:] 6.45 # [online:] 6.56 #WER eval92 (tg) 5.55 6.13 # [looped:] 6.08 # [online:] 6.24 #WER eval92 (big-dict,tgpr) 3.58 3.88 # [looped:] 3.93 # [online:] 3.88 #WER eval92 (big-dict,fg) 2.98 3.38 # [looped:] 3.47 # [online:] 3.53 # Final train prob -0.7200 -0.5492 # Final valid prob -0.8834 -0.6343 # Final train acc 0.7762 0.8154 # Final valid acc 0.7301 0.7849 set -e -o pipefail # First the options that are passed through to run_ivector_common.sh # (some of which are also used in this script directly). stage=0 nj=30 train_set=train_si284 test_sets="test_dev93 test_eval92" gmm=tri4b # this is the source gmm-dir that we'll use for alignments; it # should have alignments for the specified training data. num_threads_ubm=32 nnet3_affix= # affix for exp dirs, e.g. it was _cleaned in tedlium. # Options which are not passed through to run_ivector_common.sh affix=1a #affix for TDNN+LSTM directory e.g. "1a" or "1b", in case we change the configuration. common_egs_dir= reporting_email= # LSTM options train_stage=-10 label_delay=5 # training chunk-options chunk_width=40,30,20 chunk_left_context=40 chunk_right_context=0 # training options srand=0 remove_egs=true #decode options test_online_decoding=false # if true, it will run the last decoding stage. . ./cmd.sh . ./path.sh . ./utils/parse_options.sh if ! cuda-compiled; then cat <<EOF && exit 1 This script is intended to be used with GPUs but you have not compiled Kaldi with CUDA If you want to use GPUs (and have them), go to src/, and configure and make on a machine where "nvcc" is installed. EOF fi local/nnet3/run_ivector_common.sh \ --stage $stage --nj $nj \ --train-set $train_set --gmm $gmm \ --num-threads-ubm $num_threads_ubm \ --nnet3-affix "$nnet3_affix" gmm_dir=exp/${gmm} ali_dir=exp/${gmm}_ali_${train_set}_sp lang=data/lang dir=exp/nnet3${nnet3_affix}/tdnn_lstm${affix}_sp train_data_dir=data/${train_set}_sp_hires train_ivector_dir=exp/nnet3${nnet3_affix}/ivectors_${train_set}_sp_hires for f in $train_data_dir/feats.scp $train_ivector_dir/ivector_online.scp \ $gmm_dir/{graph_tgpr,graph_bd_tgpr}/HCLG.fst \ $ali_dir/ali.1.gz $gmm_dir/final.mdl; do [ ! -f $f ] && echo "$0: expected file $f to exist" && exit 1 done if [ $stage -le 12 ]; then mkdir -p $dir echo "$0: creating neural net configs using the xconfig parser"; num_targets=$(tree-info $ali_dir/tree |grep num-pdfs|awk '{print $2}') mkdir -p $dir/configs cat <<EOF > $dir/configs/network.xconfig input dim=100 name=ivector input dim=40 name=input # please note that it is important to have input layer with the name=input # as the layer immediately preceding the fixed-affine-layer to enable # the use of short notation for the descriptor fixed-affine-layer name=lda input=Append(-2,-1,0,1,2,ReplaceIndex(ivector, t, 0)) affine-transform-file=$dir/configs/lda.mat # the first splicing is moved before the lda layer, so no splicing here relu-renorm-layer name=tdnn1 dim=520 relu-renorm-layer name=tdnn2 dim=520 input=Append(-1,0,1) fast-lstmp-layer name=lstm1 cell-dim=520 recurrent-projection-dim=130 non-recurrent-projection-dim=130 decay-time=20 delay=-3 relu-renorm-layer name=tdnn3 dim=520 input=Append(-3,0,3) relu-renorm-layer name=tdnn4 dim=520 input=Append(-3,0,3) fast-lstmp-layer name=lstm2 cell-dim=520 recurrent-projection-dim=130 non-recurrent-projection-dim=130 decay-time=20 delay=-3 relu-renorm-layer name=tdnn5 dim=520 input=Append(-3,0,3) relu-renorm-layer name=tdnn6 dim=520 input=Append(-3,0,3) fast-lstmp-layer name=lstm3 cell-dim=520 recurrent-projection-dim=130 non-recurrent-projection-dim=130 decay-time=20 delay=-3 output-layer name=output input=lstm3 output-delay=$label_delay dim=$num_targets max-change=1.5 EOF steps/nnet3/xconfig_to_configs.py --xconfig-file $dir/configs/network.xconfig --config-dir $dir/configs/ fi if [ $stage -le 13 ]; then if [[ $(hostname -f) == *.clsp.jhu.edu ]] && [ ! -d $dir/egs/storage ]; then utils/create_split_dir.pl \ /export/b0{3,4,5,6}/$USER/kaldi-data/egs/tedlium-$(date +'%m_%d_%H_%M')/s5_r2/$dir/egs/storage $dir/egs/storage fi steps/nnet3/train_rnn.py --stage=$train_stage \ --cmd="$decode_cmd" \ --feat.online-ivector-dir=$train_ivector_dir \ --feat.cmvn-opts="--norm-means=false --norm-vars=false" \ --trainer.srand=$srand \ --trainer.max-param-change=2.0 \ --trainer.num-epochs=6 \ --trainer.deriv-truncate-margin=10 \ --trainer.samples-per-iter=20000 \ --trainer.optimization.num-jobs-initial=3 \ --trainer.optimization.num-jobs-final=10 \ --trainer.optimization.initial-effective-lrate=0.0003 \ --trainer.optimization.final-effective-lrate=0.00003 \ --trainer.optimization.shrink-value 0.99 \ --trainer.rnn.num-chunk-per-minibatch=128,64 \ --trainer.optimization.momentum=0.5 \ --egs.chunk-width=$chunk_width \ --egs.chunk-left-context=$chunk_left_context \ --egs.chunk-right-context=$chunk_right_context \ --egs.chunk-left-context-initial=0 \ --egs.chunk-right-context-final=0 \ --egs.dir="$common_egs_dir" \ --cleanup.remove-egs=$remove_egs \ --use-gpu=true \ --feat-dir=$train_data_dir \ --ali-dir=$ali_dir \ --lang=$lang \ --reporting.email="$reporting_email" \ --dir=$dir || exit 1; fi if [ $stage -le 14 ]; then frames_per_chunk=$(echo $chunk_width | cut -d, -f1) rm $dir/.error 2>/dev/null || true for data in $test_sets; do ( frames_per_chunk=$(echo $chunk_width | cut -d, -f1) data_affix=$(echo $data | sed s/test_//) nj=$(wc -l <data/${data}_hires/spk2utt) for lmtype in tgpr bd_tgpr; do graph_dir=$gmm_dir/graph_${lmtype} steps/nnet3/decode.sh \ --extra-left-context $chunk_left_context \ --extra-right-context $chunk_right_context \ --extra-left-context-initial 0 \ --extra-right-context-final 0 \ --frames-per-chunk $frames_per_chunk \ --nj $nj --cmd "$decode_cmd" --num-threads 4 \ --online-ivector-dir exp/nnet3${nnet3_affix}/ivectors_${data}_hires \ $graph_dir data/${data}_hires ${dir}/decode_${lmtype}_${data_affix} || exit 1 done steps/lmrescore.sh --cmd "$decode_cmd" data/lang_test_{tgpr,tg} \ data/${data}_hires ${dir}/decode_{tgpr,tg}_${data_affix} || exit 1 steps/lmrescore_const_arpa.sh --cmd "$decode_cmd" \ data/lang_test_bd_{tgpr,fgconst} \ data/${data}_hires ${dir}/decode_${lmtype}_${data_affix}{,_fg} || exit 1 ) || touch $dir/.error & done wait [ -f $dir/.error ] && echo "$0: there was a problem while decoding" && exit 1 fi if [ $stage -le 15 ]; then # 'looped' decoding. # note: you should NOT do this decoding step for setups that have bidirectional # recurrence, like BLSTMs-- it doesn't make sense and will give bad results. # we didn't write a -parallel version of this program yet, # so it will take a bit longer as the --num-threads option is not supported. # we just hardcode the --frames-per-chunk option as it doesn't have to # match any value used in training, and it won't affect the results (unlike # regular decoding). rm $dir/.error 2>/dev/null || true for data in $test_sets; do ( data_affix=$(echo $data | sed s/test_//) nj=$(wc -l <data/${data}_hires/spk2utt) for lmtype in tgpr bd_tgpr; do graph_dir=$gmm_dir/graph_${lmtype} steps/nnet3/decode_looped.sh \ --frames-per-chunk 30 \ --nj $nj --cmd "$decode_cmd" \ --online-ivector-dir exp/nnet3${nnet3_affix}/ivectors_${data}_hires \ $graph_dir data/${data}_hires ${dir}/decode_looped_${lmtype}_${data_affix} || exit 1 done steps/lmrescore.sh --cmd "$decode_cmd" data/lang_test_{tgpr,tg} \ data/${data}_hires ${dir}/decode_looped_{tgpr,tg}_${data_affix} || exit 1 steps/lmrescore_const_arpa.sh --cmd "$decode_cmd" \ data/lang_test_bd_{tgpr,fgconst} \ data/${data}_hires ${dir}/decode_looped_${lmtype}_${data_affix}{,_fg} || exit 1 ) || touch $dir/.error & done wait [ -f $dir/.error ] && echo "$0: there was a problem while decoding" && exit 1 fi if $test_online_decoding && [ $stage -le 16 ]; then # note: if the features change (e.g. you add pitch features), you will have to # change the options of the following command line. steps/online/nnet3/prepare_online_decoding.sh \ --mfcc-config conf/mfcc_hires.conf \ $lang exp/nnet3${nnet3_affix}/extractor ${dir} ${dir}_online rm $dir/.error 2>/dev/null || true for data in $test_sets; do ( data_affix=$(echo $data | sed s/test_//) nj=$(wc -l <data/${data}_hires/spk2utt) # note: we just give it "data/${data}" as it only uses the wav.scp, the # feature type does not matter. for lmtype in tgpr bd_tgpr; do graph_dir=$gmm_dir/graph_${lmtype} steps/online/nnet3/decode.sh \ --nj $nj --cmd "$decode_cmd" \ $graph_dir data/${data} ${dir}_online/decode_${lmtype}_${data_affix} || exit 1 done steps/lmrescore.sh --cmd "$decode_cmd" data/lang_test_{tgpr,tg} \ data/${data}_hires ${dir}_online/decode_{tgpr,tg}_${data_affix} || exit 1 steps/lmrescore_const_arpa.sh --cmd "$decode_cmd" \ data/lang_test_bd_{tgpr,fgconst} \ data/${data}_hires ${dir}_online/decode_${lmtype}_${data_affix}{,_fg} || exit 1 ) || touch $dir/.error & done wait [ -f $dir/.error ] && echo "$0: there was a problem while decoding" && exit 1 fi exit 0; |