Blame view
egs/wsj/s5/steps/online/nnet2/get_egs_discriminative2.sh
9.81 KB
8dcb6dfcb first commit |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 |
#!/bin/bash # Copyright 2012 Johns Hopkins University (Author: Daniel Povey). Apache 2.0. # This script dumps examples MPE or MMI or state-level minimum bayes risk (sMBR) # training of neural nets. Note: for "criterion", smbr > mpe > mmi in terms of # compatibility of the dumped egs, meaning you can use the egs dumped with # --criterion smbr for MPE or MMI, and egs dumped with --criterion mpe for MMI # training. The discriminative training program itself doesn't enforce this and # it would let you mix and match them arbitrarily; we area speaking in terms of # the correctness of the algorithm that splits the lattices into pieces. # Begin configuration section. cmd=run.pl criterion=smbr drop_frames=false # option relevant for MMI, affects how we dump examples. samples_per_iter=400000 # measured in frames, not in "examples" max_temp_archives=128 # maximum number of temp archives per input job, only # affects the process of generating archives, not the # final result. stage=0 iter=final cleanup=true # End configuration section. echo "$0 $@" # Print the command line for logging if [ -f path.sh ]; then . ./path.sh; fi . parse_options.sh || exit 1; if [ $# != 6 ]; then echo "Usage: $0 [opts] <data> <lang> <ali-dir> <denlat-dir> <src-online-nnet2-dir> <degs-dir>" echo " e.g.: $0 data/train data/lang exp/nnet2_online/nnet_a_online{_ali,_denlats,_degs}" echo "" echo "Main options (for others, see top of script file)" echo " --config <config-file> # config file containing options" echo " --cmd (utils/run.pl|utils/queue.pl <queue opts>) # how to run jobs (probably would be good to add --max-jobs-run 5 or so if using" echo " # GridEngine (to avoid excessive NFS traffic)." echo " --samples-per-iter <#samples|400000> # Number of samples of data to process per iteration, per" echo " # process." echo " --stage <stage|-8> # Used to run a partially-completed training process from somewhere in" echo " # the middle." echo " --criterion <criterion|smbr> # Training criterion: may be smbr, mmi or mpfe" echo " --online-ivector-dir <dir|""> # Directory for online-estimated iVectors, used in the" echo " # online-neural-net setup. (but you may want to use" echo " # steps/online/nnet2/get_egs_discriminative2.sh instead)" exit 1; fi data=$1 lang=$2 alidir=$3 denlatdir=$4 srcdir=$5 dir=$6 # Check some files. for f in $data/feats.scp $lang/L.fst $alidir/ali.1.gz $alidir/num_jobs $alidir/tree \ $denlatdir/lat.1.gz $denlatdir/num_jobs $srcdir/$iter.mdl $srcdir/conf/online_nnet2_decoding.conf; do [ ! -f $f ] && echo "$0: no such file $f" && exit 1; done mkdir -p $dir/log $dir/info || exit 1; utils/lang/check_phones_compatible.sh $lang/phones.txt $alidir/phones.txt || exit 1; cp $lang/phones.txt $dir || exit 1; nj=$(cat $denlatdir/num_jobs) || exit 1; # $nj is the number of # splits of the denlats and alignments. nj_ali=$(cat $alidir/num_jobs) || exit 1; sdata=$data/split$nj utils/split_data.sh $data $nj if [ $nj_ali -eq $nj ]; then ali_rspecifier="ark,s,cs:gunzip -c $alidir/ali.JOB.gz |" else ali_rspecifier="scp:$dir/ali.scp" if [ $stage -le 1 ]; then echo "$0: number of jobs in den-lats versus alignments differ: dumping them as single archive and index." alis=$(for n in $(seq $nj_ali); do echo -n "$alidir/ali.$n.gz "; done) copy-int-vector --print-args=false \ "ark:gunzip -c $alis|" ark,scp:$dir/ali.ark,$dir/ali.scp || exit 1; fi fi silphonelist=`cat $lang/phones/silence.csl` || exit 1; cp $alidir/tree $dir cp $lang/phones/silence.csl $dir/info || exit 1; cp $srcdir/$iter.mdl $dir/final.mdl || exit 1; grep -v '^--endpoint' $srcdir/conf/online_nnet2_decoding.conf >$dir/feature.conf || exit 1; ivector_dim=$(online2-wav-dump-features --config=$dir/feature.conf --print-ivector-dim=true) || exit 1; echo $ivector_dim > $dir/info/ivector_dim ! [ $ivector_dim -ge 0 ] && echo "$0: error getting iVector dim" && exit 1; if [ -f $data/segments ]; then # note: in the feature extraction, because the program online2-wav-dump-features is sensitive to the # previous utterances within a speaker, we do the filtering after extracting the features. echo "$0 [info]: segments file exists: using that." feats="ark,s,cs:extract-segments scp:$sdata/JOB/wav.scp $sdata/JOB/segments ark:- | online2-wav-dump-features --config=$dir/feature.conf ark:$sdata/JOB/spk2utt ark,s,cs:- ark:- |" else echo "$0 [info]: no segments file exists, using wav.scp." feats="ark,s,cs:online2-wav-dump-features --config=$dir/feature.conf ark:$sdata/JOB/spk2utt scp:$sdata/JOB/wav.scp ark:- |" fi if [ $stage -le 2 ]; then echo "$0: working out number of frames of training data" num_frames=$(steps/nnet2/get_num_frames.sh $data) echo $num_frames > $dir/info/num_frames # Working out total number of archives. Add one on the assumption the # num-frames won't divide exactly, and we want to round up. num_archives=$[$num_frames/$samples_per_iter + 1] # the next few lines relate to how we may temporarily split each input job # into fewer than $num_archives pieces, to avoid using an excessive # number of filehandles. archive_ratio=$[$num_archives/$max_temp_archives+1] num_archives_temp=$[$num_archives/$archive_ratio] # change $num_archives slightly to make it an exact multiple # of $archive_ratio. num_archives=$[$num_archives_temp*$archive_ratio] echo $num_archives >$dir/info/num_archives || exit 1 echo $num_archives_temp >$dir/info/num_archives_temp || exit 1 frames_per_archive=$[$num_frames/$num_archives] # note, this is the number of frames per archive prior to discarding frames. echo $frames_per_archive > $dir/info/frames_per_archive else num_archives=$(cat $dir/info/num_archives) || exit 1; num_archives_temp=$(cat $dir/info/num_archives_temp) || exit 1; frames_per_archive=$(cat $dir/info/frames_per_archive) || exit 1; fi echo "$0: Splitting the data up into $num_archives archives (using $num_archives_temp temporary pieces per input job)" echo "$0: giving samples-per-iteration of $frames_per_archive (you requested $samples_per_iter)." # we create these data links regardless of the stage, as there are situations # where we would want to recreate a data link that had previously been deleted. if [ -d $dir/storage ]; then echo "$0: creating data links for distributed storage of degs" # See utils/create_split_dir.pl for how this 'storage' directory is created. for x in $(seq $nj); do for y in $(seq $num_archives_temp); do utils/create_data_link.pl $dir/degs_orig.$x.$y.ark done done for z in $(seq $num_archives); do utils/create_data_link.pl $dir/degs.$z.ark done if [ $num_archives_temp -ne $num_archives ]; then for z in $(seq $num_archives); do utils/create_data_link.pl $dir/degs_temp.$z.ark done fi fi if [ $stage -le 3 ]; then echo "$0: getting initial training examples by splitting lattices" degs_list=$(for n in $(seq $num_archives_temp); do echo -n "ark:$dir/degs_orig.JOB.$n.ark "; done) $cmd JOB=1:$nj $dir/log/get_egs.JOB.log \ nnet-get-egs-discriminative --criterion=$criterion --drop-frames=$drop_frames \ "$srcdir/$iter.mdl" "$feats" "$ali_rspecifier" "ark,s,cs:gunzip -c $denlatdir/lat.JOB.gz|" ark:- \| \ nnet-copy-egs-discriminative $const_dim_opt ark:- $degs_list || exit 1; sleep 5; # wait a bit so NFS has time to write files. fi if [ $stage -le 4 ]; then degs_list=$(for n in $(seq $nj); do echo -n "$dir/degs_orig.$n.JOB.ark "; done) if [ $num_archives -eq $num_archives_temp ]; then echo "$0: combining data into final archives and shuffling it" $cmd JOB=1:$num_archives $dir/log/shuffle.JOB.log \ cat $degs_list \| nnet-shuffle-egs-discriminative --srand=JOB ark:- \ ark:$dir/degs.JOB.ark || exit 1; else echo "$0: combining and re-splitting data into un-shuffled versions of final archives." archive_ratio=$[$num_archives/$num_archives_temp] ! [ $archive_ratio -gt 1 ] && echo "$0: Bad archive_ratio $archive_ratio" && exit 1; # note: the \$[ .. ] won't be evaluated until the job gets executed. The # aim is to write to the archives with the final numbering, 1 # ... num_archives, which is more than num_archives_temp. The list with # \$[... ] expressions in it computes the set of final indexes for each # temporary index. degs_list_out=$(for n in $(seq $archive_ratio); do echo -n "ark:$dir/degs_temp.\$[((JOB-1)*$archive_ratio)+$n].ark "; done) # e.g. if dir=foo and archive_ratio=2, we'd have # degs_list_out='foo/degs_temp.$[((JOB-1)*2)+1].ark foo/degs_temp.$[((JOB-1)*2)+2].ark' $cmd JOB=1:$num_archives_temp $dir/log/resplit.JOB.log \ cat $degs_list \| nnet-copy-egs-discriminative --srand=JOB ark:- \ $degs_list_out || exit 1; fi fi if [ $stage -le 5 ] && [ $num_archives -ne $num_archives_temp ]; then echo "$0: shuffling final archives." $cmd JOB=1:$num_archives $dir/log/shuffle.JOB.log \ nnet-shuffle-egs-discriminative --srand=JOB ark:$dir/degs_temp.JOB.ark \ ark:$dir/degs.JOB.ark || exit 1 fi if $cleanup; then echo "$0: removing temporary archives." for x in $(seq $nj); do for y in $(seq $num_archives_temp); do file=$dir/degs_orig.$x.$y.ark [ -L $file ] && rm $(utils/make_absolute.sh $file); rm $file done done if [ $num_archives_temp -ne $num_archives ]; then for z in $(seq $num_archives); do file=$dir/degs_temp.$z.ark [ -L $file ] && rm $(utils/make_absolute.sh $file); rm $file done fi fi echo "$0: Done." |