Blame view
egs/wsj/s5/steps/online/nnet2/train_diag_ubm.sh
7.67 KB
8dcb6dfcb first commit |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 |
#!/bin/bash # Copyright 2012 Johns Hopkins University (Author: Daniel Povey) # 2013 Daniel Povey # Apache 2.0. # This script trains a diagonal UBM that we'll use in online iVector estimation, # where the online-estimated iVector will be used as a secondary input to a deep # neural net for single-pass DNN-based decoding. # This script was modified from ../../sre08/v1/sid/train_diag_ubm.sh. It trains # a diagonal UBM on top of features processed with apply-cmvn-online and then # transformed with an LDA+MLLT or PCA matrix (obtained from the source # directory). This script does not use the trained model from the source # directory to initialize the diagonal GMM; instead, we initialize the GMM using # gmm-global-init-from-feats, which sets the means to random data points and # then does some iterations of E-M in memory. After the in-memory # initialization we train for a few iterations in parallel. Note that if an # LDA+MLLT transform matrix is used, there will be a slight mismatch in that the # source LDA+MLLT matrix (final.mat) will have been estimated using standard # CMVN, and we're using online CMVN. We don't think this will have much effect. # Begin configuration section. nj=4 cmd=run.pl num_iters=4 stage=-2 num_gselect=30 # Number of Gaussian-selection indices to use while training # the model. num_frames=500000 # number of frames to keep in memory for initialization num_iters_init=20 initial_gauss_proportion=0.5 # Start with half the target number of Gaussians subsample=2 # subsample all features with this periodicity, in the main E-M phase. cleanup=true min_gaussian_weight=0.0001 remove_low_count_gaussians=true # set this to false if you need #gauss to stay fixed. num_threads=16 parallel_opts= # ignored now. online_cmvn_config=conf/online_cmvn.conf # End configuration section. echo "$0 $@" # Print the command line for logging [ -f ./path.sh ] && . ./path.sh; # source the path. . parse_options.sh || exit 1; if [ $# != 4 ]; then echo "Usage: $0 <data> <num-gauss> <srcdir> <output-dir>" echo " e.g.: $0 data/train 1024 exp/tri3b/ exp/diag_ubm" echo "(in srcdir we find splice_opts and final.mat)" echo "Options: " echo " --cmd (utils/run.pl|utils/queue.pl <queue opts>) # how to run jobs." echo " --nj <num-jobs|4> # number of parallel jobs to run." echo " --num-iters <niter|20> # number of iterations of parallel " echo " # training (default: $num_iters)" echo " --stage <stage|-2> # stage to do partial re-run from." echo " --num-gselect <n|30> # Number of Gaussians per frame to" echo " # limit computation to, for speed" echo " --subsample <n|5> # In main E-M phase, use every n" echo " # frames (a speedup)" echo " --num-frames <n|500000> # Maximum num-frames to keep in memory" echo " # for model initialization" echo " --num-iters-init <n|20> # Number of E-M iterations for model" echo " # initialization" echo " --initial-gauss-proportion <proportion|0.5> # Proportion of Gaussians to start with" echo " # in initialization phase (then split)" echo " --num-threads <n|32> # number of threads to use in initialization" echo " # phase (must match with parallel-opts option)" echo " --min-gaussian-weight <weight|0.0001> # min Gaussian weight allowed in GMM" echo " # initialization (this relatively high" echo " # value keeps counts fairly even)" exit 1; fi data=$1 num_gauss=$2 srcdir=$3 dir=$4 ! [ $num_gauss -gt 0 ] && echo "Bad num-gauss $num_gauss" && exit 1; sdata=$data/split$nj mkdir -p $dir/log utils/split_data.sh $data $nj || exit 1; for f in $data/feats.scp "$online_cmvn_config" $srcdir/splice_opts $srcdir/final.mat; do [ ! -f "$f" ] && echo "$0: expecting file $f to exist" && exit 1 done if [ -d "$dir" ]; then bak_dir=$(mktemp -d ${dir}/backup.XXX); echo "$0: Directory $dir already exists. Backing up diagonal UBM in ${bak_dir}"; for f in $dir/final.mat $dir/final.dubm $dir/online_cmvn.conf $dir/global_cmvn.stats; do [ -f "$f" ] && mv $f ${bak_dir}/ done [ -d "$dir/log" ] && mv $dir/log ${bak_dir}/ fi splice_opts=$(cat $srcdir/splice_opts) cp $srcdir/splice_opts $dir/ || exit 1; cp $srcdir/final.mat $dir/ || exit 1; cp $online_cmvn_config $dir/online_cmvn.conf || exit 1; # create global_cmvn.stats if ! matrix-sum --binary=false scp:$data/cmvn.scp - >$dir/global_cmvn.stats 2>/dev/null; then echo "$0: Error summing cmvn stats" exit 1 fi # Note: there is no point subsampling all_feats, because gmm-global-init-from-feats # effectively does subsampling itself (it keeps a random subset of the features). all_feats="ark,s,cs:apply-cmvn-online --config=$online_cmvn_config $dir/global_cmvn.stats scp:$data/feats.scp ark:- | splice-feats $splice_opts ark:- ark:- | transform-feats $dir/final.mat ark:- ark:- |" feats="ark,s,cs:apply-cmvn-online --config=$online_cmvn_config $dir/global_cmvn.stats scp:$sdata/JOB/feats.scp ark:- | splice-feats $splice_opts ark:- ark:- | transform-feats $dir/final.mat ark:- ark:- | subsample-feats --n=$subsample ark:- ark:- |" num_gauss_init=$(perl -e "print int($initial_gauss_proportion * $num_gauss); "); ! [ $num_gauss_init -gt 0 ] && echo "Invalid num-gauss-init $num_gauss_init" && exit 1; if [ $stage -le -2 ]; then echo "$0: initializing model from E-M in memory, " echo "$0: starting from $num_gauss_init Gaussians, reaching $num_gauss;" echo "$0: for $num_iters_init iterations, using at most $num_frames frames of data" $cmd --num-threads $num_threads $dir/log/gmm_init.log \ gmm-global-init-from-feats --num-threads=$num_threads --num-frames=$num_frames \ --min-gaussian-weight=$min_gaussian_weight \ --num-gauss=$num_gauss --num-gauss-init=$num_gauss_init --num-iters=$num_iters_init \ "$all_feats" $dir/0.dubm || exit 1; fi # Store Gaussian selection indices on disk-- this speeds up the training passes. if [ $stage -le -1 ]; then echo "Getting Gaussian-selection info" $cmd JOB=1:$nj $dir/log/gselect.JOB.log \ gmm-gselect --n=$num_gselect $dir/0.dubm "$feats" \ "ark:|gzip -c >$dir/gselect.JOB.gz" || exit 1; fi echo "$0: will train for $num_iters iterations, in parallel over" echo "$0: $nj machines, parallelized with '$cmd'" for x in `seq 0 $[$num_iters-1]`; do echo "$0: Training pass $x" if [ $stage -le $x ]; then # Accumulate stats. $cmd JOB=1:$nj $dir/log/acc.$x.JOB.log \ gmm-global-acc-stats "--gselect=ark,s,cs:gunzip -c $dir/gselect.JOB.gz|" \ $dir/$x.dubm "$feats" $dir/$x.JOB.acc || exit 1; if [ $x -lt $[$num_iters-1] ]; then # Don't remove low-count Gaussians till last iter, opt="--remove-low-count-gaussians=false" # or gselect info won't be valid any more. else opt="--remove-low-count-gaussians=$remove_low_count_gaussians" fi $cmd $dir/log/update.$x.log \ gmm-global-est $opt --min-gaussian-weight=$min_gaussian_weight $dir/$x.dubm "gmm-global-sum-accs - $dir/$x.*.acc|" \ $dir/$[$x+1].dubm || exit 1; if $cleanup; then rm $dir/$x.*.acc $dir/$x.dubm fi fi done if $cleanup; then rm $dir/gselect.*.gz fi mv $dir/$num_iters.dubm $dir/final.dubm || exit 1; exit 0; |