Blame view
egs/wsj/s5/steps/segmentation/internal/prepare_sad_graph.py
6.35 KB
8dcb6dfcb first commit |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 |
#!/usr/bin/env python # Copyright 2016 Vimal Manohar # Apache 2.0 """Prepares a graph with a simple HMM topology for segmentation with minimum and maximum speech duration constraints and minimum silence duration constraint. The graph is written to the 'output_graph', which can be file or "-" for stdout. """ from __future__ import print_function import argparse import logging import math import os import sys import traceback sys.path.insert(0, 'steps') import libs.common as common_lib logger = logging.getLogger(__name__) logger.setLevel(logging.INFO) handler = logging.StreamHandler() handler.setLevel(logging.INFO) formatter = logging.Formatter("%(asctime)s [%(filename)s:%(lineno)s - " "%(funcName)s - %(levelname)s ] %(message)s") handler.setFormatter(formatter) logger.addHandler(handler) def get_args(): parser = argparse.ArgumentParser( description="""This script prepares a graph with a simple HMM topology for segmentation with minimum and maximum speech duration constraints and minimum silence duration constraint. The graph is written to the 'output_graph', which can be file or "-" for stdout. for segmentation with minimum and maximum speech duration constraints and minimum silence duration constraint.""", formatter_class=argparse.ArgumentDefaultsHelpFormatter) parser.add_argument("--transition-scale", type=float, default=1.0, help="""Scale on transition probabilities relative to LM weights""") parser.add_argument("--loopscale", type=float, default=0.1, help="""Scale on self-loop log-probabilities relative to LM weights""") parser.add_argument("--min-silence-duration", type=float, default=0.03, help="""Minimum duration for silence""") parser.add_argument("--min-speech-duration", type=float, default=0.3, help="""Minimum duration for speech""") parser.add_argument("--max-speech-duration", type=float, default=10.0, help="""Maximum duration for speech""") parser.add_argument("--frame-shift", type=float, default=0.03, help="""Frame shift in seconds""") parser.add_argument("--edge-silence-probability", type=float, default=0.5, help="Probability of silence at the edges.") parser.add_argument("--transition-probability", type=float, default=0.1, help="Transition probability for silence to speech " "or vice-versa") parser.add_argument("output_graph", type=str, help="Output graph") args = parser.parse_args() args.min_states_silence = int(args.min_silence_duration / args.frame_shift + 0.5) args.min_states_speech = int(args.min_speech_duration / args.frame_shift + 0.5) args.max_states_speech = int(args.max_speech_duration / args.frame_shift + 0.5) return args def print_states(args, file_handle): # Initial transition to silence print ("0 1 silence silence {0}".format(-math.log(args.edge_silence_probability)), file=file_handle) silence_start_state = 1 # Silence min duration transitions # 1->2, 2->3 and so on until # (1 + min_states_silence - 2) -> (1 + min_states_silence - 1) ... for state in range(silence_start_state, silence_start_state + args.min_states_silence - 1): print ("{state} {next_state} silence silence {cost}".format( state=state, next_state=state + 1, cost=0.0), file=file_handle) silence_last_state = silence_start_state + args.min_states_silence - 1 # Silence self-loop print ("{state} {state} silence silence {cost}".format( state=silence_last_state, cost=0.0), file=file_handle) speech_start_state = silence_last_state + 1 # Initial transition to speech print ("0 {state} speech speech {cost}".format( state=speech_start_state, cost=-math.log(1.0 - args.edge_silence_probability)), file=file_handle) # Silence to speech transition print ("{sil_state} {speech_state} speech speech {cost}".format( sil_state=silence_last_state, speech_state=speech_start_state, cost=-math.log(args.transition_probability)), file=file_handle) # Speech min duration for state in range(speech_start_state, speech_start_state + args.min_states_speech - 1): print ("{state} {next_state} speech speech {cost}".format( state=state, next_state=state + 1, cost=0.0), file=file_handle) # Speech max duration for state in range(speech_start_state + args.min_states_speech - 1, speech_start_state + args.max_states_speech - 1): print ("{state} {next_state} speech speech {cost}".format( state=state, next_state=state + 1, cost=0.0), file=file_handle) print ("{state} {sil_state} silence silence {cost}".format( state=state, sil_state=silence_start_state, cost=-math.log(args.transition_probability)), file=file_handle) speech_last_state = speech_start_state + args.max_states_speech - 1 # Transition to silence after max duration of speech print ("{state} {sil_state} silence silence {cost}".format( state=speech_last_state, sil_state=silence_start_state, cost=0.0), file=file_handle) for state in range(1, speech_start_state): print ("{state} {cost}".format( state=state, cost=-math.log(args.edge_silence_probability)), file=file_handle) for state in range(speech_start_state, speech_last_state + 1): print ("{state} {cost}".format( state=state, cost=-math.log(1.0 - args.edge_silence_probability)), file=file_handle) def main(): try: args = get_args() with common_lib.smart_open(args.output_graph, 'w') as f: print_states(args, f) except Exception: raise if __name__ == '__main__': main() |