Blame view
src/base/kaldi-math-test.cc
11.2 KB
8dcb6dfcb first commit |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 |
// base/kaldi-math-test.cc // // Copyright 2009-2011 Microsoft Corporation; Yanmin Qian; Jan Silovsky // See ../../COPYING for clarification regarding multiple authors // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // http://www.apache.org/licenses/LICENSE-2.0 // THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY // KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED // WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE, // MERCHANTABLITY OR NON-INFRINGEMENT. // See the Apache 2 License for the specific language governing permissions and // limitations under the License. #include "base/kaldi-math.h" #include <limits> #include "base/timer.h" namespace kaldi { template<class I> void UnitTestGcdLcmTpl() { for (I a = 1; a < 15; a++) { // a is min gcd. I b = (I)(Rand() % 10); I c = (I)(Rand() % 10); if (std::numeric_limits<I>::is_signed) { if (Rand() % 2 == 0) b = -b; if (Rand() % 2 == 0) c = -c; } if (b == 0 && c == 0) continue; // gcd not defined for such numbers. I g = Gcd(b*a, c*a); KALDI_ASSERT(g >= a); KALDI_ASSERT((b*a) % g == 0); KALDI_ASSERT((c*a) % g == 0); // test least common multiple if (b <= 0 || c <= 0) continue; // lcm not defined unless both positive. I h = Lcm(b*a, c*a); KALDI_ASSERT(h != 0 && (h % (b*a)) == 0 && (h % (c*a)) == 0); } } void UnitTestRoundUpToNearestPowerOfTwo() { KALDI_ASSERT(RoundUpToNearestPowerOfTwo(1) == 1); KALDI_ASSERT(RoundUpToNearestPowerOfTwo(2) == 2); KALDI_ASSERT(RoundUpToNearestPowerOfTwo(3) == 4); KALDI_ASSERT(RoundUpToNearestPowerOfTwo(4) == 4); KALDI_ASSERT(RoundUpToNearestPowerOfTwo(7) == 8); KALDI_ASSERT(RoundUpToNearestPowerOfTwo(8) == 8); KALDI_ASSERT(RoundUpToNearestPowerOfTwo(255) == 256); KALDI_ASSERT(RoundUpToNearestPowerOfTwo(256) == 256); KALDI_ASSERT(RoundUpToNearestPowerOfTwo(257) == 512); KALDI_ASSERT(RoundUpToNearestPowerOfTwo(1073700000) == 1073741824); } void UnitTestDivideRoundingDown() { for (int32 i = 0; i < 100; i++) { int32 a = RandInt(-100, 100); int32 b = 0; while (b == 0) b = RandInt(-100, 100); KALDI_ASSERT(DivideRoundingDown(a, b) == std::floor(static_cast<double>(a) / static_cast<double>(b))); } } void UnitTestGcdLcm() { UnitTestGcdLcmTpl<int>(); UnitTestGcdLcmTpl<size_t>(); UnitTestGcdLcmTpl<int16>(); } void UnitTestRand() { // Testing random-number generation. std::cout << "Testing random-number generation. " << "If there is an error this may not terminate. "; std::cout << "If this does not terminate, look more closely. " << "There might be a problem [but might not be] "; for (int i = 1; i < 10; i++) { { // test RandUniform. std::cout << "Test RandUniform "; KALDI_ASSERT(RandUniform() >= 0 && RandUniform() <= 1); float sum = RandUniform()-0.5; for (int j = 0; ; j++) { sum += RandUniform()-0.5; if (std::abs(sum) < 0.5*sqrt(static_cast<double>(j))) break; } } { // test RandGauss. float sum = RandGauss(); for (int j = 0; ; j++) { sum += RandGauss(); if (std::abs(sum) < 0.5*sqrt(static_cast<double>(j))) break; } } { // test RandGauss. float sum = RandGauss(); for (int j = 0; ; j++) { float a, b; RandGauss2(&a, &b); if (i % 2 == 0) sum += a; else sum += b; if (std::abs(sum) < 0.5*sqrt(static_cast<double>(j))) break; } } { // test poisson_Rand(). KALDI_ASSERT(RandPoisson(3.0) >= 0); KALDI_ASSERT(RandPoisson(0.0) == 0); std::cout << "Test RandPoisson "; float lambda = RandUniform() * 3.0; // between 0 and 3. double sum = RandPoisson(lambda) - lambda; // expected value is zero. for (int j = 0; ; j++) { sum += RandPoisson(lambda) - lambda; if (std::abs(sum) < 0.5*sqrt(static_cast<double>(j))) break; } } { // test WithProb(). for (int32 i = 0; i < 10; i++) { KALDI_ASSERT((WithProb(0.0) == false) && (WithProb(1.0) == true)); } { int32 tot = 0, n = 10000; BaseFloat p = 0.5; for (int32 i = 0; i < n; i++) tot += WithProb(p); KALDI_ASSERT(tot > (n * p * 0.8) && tot < (n * p * 1.2)); } { int32 tot = 0, n = 10000; BaseFloat p = 0.25; for (int32 i = 0; i < n; i++) tot += WithProb(p); KALDI_ASSERT(tot > (n * p * 0.8) && tot < (n * p * 1.2)); } } { // test RandInt(). KALDI_ASSERT(RandInt(0, 3) >= 0 && RandInt(0, 3) <= 3); std::cout << "Test RandInt "; int minint = Rand() % 200; int maxint = minint + 1 + Rand() % 20; float sum = RandInt(minint, maxint) + 0.5*(minint+maxint); for (int j = 0; ; j++) { sum += RandInt(minint, maxint) - 0.5*(minint+maxint); if (std::abs(static_cast<float>(sum)) < 0.5*sqrt(static_cast<double>(j))*(maxint-minint)) break; } } { // test RandPrune in basic way. KALDI_ASSERT(RandPrune(1.1, 1.0) == 1.1); KALDI_ASSERT(RandPrune(0.0, 0.0) == 0.0); KALDI_ASSERT(RandPrune(-1.1, 1.0) == -1.1); KALDI_ASSERT(RandPrune(0.0, 1.0) == 0.0); KALDI_ASSERT(RandPrune(0.5, 1.0) >= 0.0); KALDI_ASSERT(RandPrune(-0.5, 1.0) <= 0.0); BaseFloat f = RandPrune(-0.5, 1.0); KALDI_ASSERT(f == 0.0 || f == -1.0); f = RandPrune(0.5, 1.0); KALDI_ASSERT(f == 0.0 || f == 1.0); } } } void UnitTestLogAddSub() { for (int i = 0; i < 100; i++) { double f1 = Rand() % 10000, f2 = Rand() % 20; double add1 = Exp(LogAdd(Log(f1), Log(f2))); double add2 = Exp(LogAdd(Log(f2), Log(f1))); double add = f1 + f2, thresh = add*0.00001; KALDI_ASSERT(std::abs(add-add1) < thresh && std::abs(add-add2) < thresh); try { double f2_check = Exp(LogSub(Log(add), Log(f1))), thresh = (f2*0.01)+0.001; KALDI_ASSERT(std::abs(f2_check-f2) < thresh); } catch(...) { KALDI_ASSERT(f2 == 0); // It will probably crash for f2=0. } } } void UnitTestDefines() { // Yes, we even unit-test the preprocessor statements. KALDI_ASSERT(Exp(kLogZeroFloat) == 0.0); KALDI_ASSERT(Exp(kLogZeroDouble) == 0.0); BaseFloat den = 0.0; KALDI_ASSERT(KALDI_ISNAN(0.0 / den)); KALDI_ASSERT(!KALDI_ISINF(0.0 / den)); KALDI_ASSERT(!KALDI_ISFINITE(0.0 / den)); KALDI_ASSERT(!KALDI_ISNAN(1.0 / den)); KALDI_ASSERT(KALDI_ISINF(1.0 / den)); KALDI_ASSERT(!KALDI_ISFINITE(1.0 / den)); KALDI_ASSERT(KALDI_ISFINITE(0.0)); KALDI_ASSERT(!KALDI_ISINF(0.0)); KALDI_ASSERT(!KALDI_ISNAN(0.0)); std::cout << 1.0+DBL_EPSILON; std::cout << 1.0 + 0.5*DBL_EPSILON; KALDI_ASSERT(1.0 + DBL_EPSILON != 1.0 && 1.0 + (0.5*DBL_EPSILON) == 1.0 && "If this test fails, you can probably just comment it out-- " "may mean your CPU exceeds expected floating point precision"); KALDI_ASSERT(1.0f + FLT_EPSILON != 1.0f && 1.0f + (0.5f*FLT_EPSILON) == 1.0f && "If this test fails, you can probably just comment it out-- " "may mean your CPU exceeds expected floating point precision"); KALDI_ASSERT(std::abs(sin(M_PI)) < 1.0e-05 && std::abs(cos(M_PI)+1.0) < 1.0e-05); KALDI_ASSERT(std::abs(sin(M_2PI)) < 1.0e-05 && std::abs(cos(M_2PI)-1.0) < 1.0e-05); KALDI_ASSERT(std::abs(sin(Exp(M_LOG_2PI))) < 1.0e-05); KALDI_ASSERT(std::abs(cos(Exp(M_LOG_2PI)) - 1.0) < 1.0e-05); } void UnitTestAssertFunc() { // Testing Assert** *functions for (int i = 1; i < 100; i++) { float f1 = Rand() % 10000 + 1, f2 = Rand() % 20 + 1; float tmp1 = f1 * f2; float tmp2 = (1/f1 + 1/f2); float add = f1 + f2; float addeql = tmp1 * tmp2; float thresh = 0.00001; AssertEqual(add, addeql, thresh); // test AssertEqual() } } template<class I> void UnitTestFactorizeTpl() { for (int p= 0; p < 100; p++) { I m = Rand() % 100000; if (m >= 1) { std::vector<I> factors; Factorize(m, &factors); I m2 = 1; for (size_t i = 0; i < factors.size(); i++) { m2 *= factors[i]; if (i+1 < factors.size()) KALDI_ASSERT(factors[i+1] >= factors[i]); // check sorted. } KALDI_ASSERT(m2 == m); // check correctness. } } } void UnitTestFactorize() { UnitTestFactorizeTpl<int>(); UnitTestFactorizeTpl<size_t>(); UnitTestFactorizeTpl<int16>(); } void UnitTestApproxEqual() { KALDI_ASSERT(ApproxEqual(1.0, 1.00001)); KALDI_ASSERT(ApproxEqual(1.0, 1.00001, 0.001)); KALDI_ASSERT(!ApproxEqual(1.0, 1.1)); KALDI_ASSERT(!ApproxEqual(1.0, 1.01, 0.001)); KALDI_ASSERT(!ApproxEqual(1.0, 0.0)); KALDI_ASSERT(ApproxEqual(0.0, 0.0)); KALDI_ASSERT(!ApproxEqual(0.0, 0.00001)); KALDI_ASSERT(!ApproxEqual(std::numeric_limits<float>::infinity(), -std::numeric_limits<float>::infinity())); KALDI_ASSERT(ApproxEqual(std::numeric_limits<float>::infinity(), std::numeric_limits<float>::infinity())); KALDI_ASSERT(ApproxEqual(-std::numeric_limits<float>::infinity(), -std::numeric_limits<float>::infinity())); KALDI_ASSERT(!ApproxEqual(-std::numeric_limits<float>::infinity(), 0)); KALDI_ASSERT(!ApproxEqual(-std::numeric_limits<float>::infinity(), 1)); } template<class Real> void UnitTestExpSpeed() { Real sum = 0.0; // compute the sum to avoid optimizing it away. Real time = 0.01; // how long this should last. int block_size = 10; int num_ops = 0; Timer tim; while (tim.Elapsed() < time) { for (int i = 0; i < block_size; i++) { sum += Exp((Real)i); } num_ops += block_size; } KALDI_ASSERT(sum > 0.0); // make it harder for the compiler to optimize Exp // away, as we have a conditional. Real flops = 1.0e-06 * num_ops / tim.Elapsed(); KALDI_LOG << "Megaflops doing Exp(" << (sizeof(Real) == 4 ? "float" : "double") << ") is " << flops; } template<class Real> void UnitTestLogSpeed() { Real sum = 0.0; // compute the sum to avoid optimizing it away. Real time = 0.01; // how long this should last. int block_size = 10; int num_ops = 0; Timer tim; while (tim.Elapsed() < time) { for (int i = 0; i < block_size; i++) { sum += Log(static_cast<float>(i + 1)); } num_ops += block_size; } KALDI_ASSERT(sum > 0.0); // make it harder for the compiler to optimize Log // away, as we have a conditional. Real flops = 1.0e-06 * num_ops / tim.Elapsed(); KALDI_LOG << "Megaflops doing Log(" << (sizeof(Real) == 4 ? "float" : "double") << ") is " << flops; } } // end namespace kaldi. int main() { using namespace kaldi; UnitTestApproxEqual(); UnitTestGcdLcm(); UnitTestFactorize(); UnitTestDefines(); UnitTestLogAddSub(); UnitTestRand(); UnitTestAssertFunc(); UnitTestRoundUpToNearestPowerOfTwo(); UnitTestDivideRoundingDown(); UnitTestExpSpeed<float>(); UnitTestExpSpeed<double>(); UnitTestLogSpeed<float>(); UnitTestLogSpeed<double>(); } |