Blame view

src/bin/acc-lda.cc 4.33 KB
8dcb6dfcb   Yannick Estève   first commit
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
  // bin/acc-lda.cc
  
  // Copyright 2009-2011  Microsoft Corporation, Go-Vivace Inc.
  //                2014  Guoguo Chen
  
  // See ../../COPYING for clarification regarding multiple authors
  //
  // Licensed under the Apache License, Version 2.0 (the "License");
  // you may not use this file except in compliance with the License.
  // You may obtain a copy of the License at
  //
  //  http://www.apache.org/licenses/LICENSE-2.0
  //
  // THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
  // KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED
  // WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE,
  // MERCHANTABLITY OR NON-INFRINGEMENT.
  // See the Apache 2 License for the specific language governing permissions and
  // limitations under the License.
  
  
  #include "base/kaldi-common.h"
  #include "util/common-utils.h"
  #include "hmm/transition-model.h"
  #include "hmm/posterior.h"
  #include "transform/lda-estimate.h"
  
  /** @brief Accumulate LDA statistics based on pdf-ids. Inputs are the
  source models, that serve as the input (and may potentially contain
  the current transformation), the un-transformed features and state
  posterior probabilities */
  int main(int argc, char *argv[]) {
    using namespace kaldi;
    typedef kaldi::int32 int32;
    try {
      const char *usage =
          "Accumulate LDA statistics based on pdf-ids.
  "
          "Usage:  acc-lda [options] <transition-gmm/model> <features-rspecifier> <posteriors-rspecifier> <lda-acc-out>
  "
          "Typical usage:
  "
          " ali-to-post ark:1.ali ark:- | acc-lda 1.mdl \"ark:splice-feats scp:train.scp|\"  ark:- ldaacc.1
  ";
  
      bool binary = true;
      BaseFloat rand_prune = 0.0;
      ParseOptions po(usage);
      po.Register("binary", &binary, "Write accumulators in binary mode.");
      po.Register("rand-prune", &rand_prune,
                  "Randomized pruning threshold for posteriors");
      po.Read(argc, argv);
  
      if (po.NumArgs() != 4) {
        po.PrintUsage();
        exit(1);
      }
  
      std::string model_rxfilename = po.GetArg(1);
      std::string features_rspecifier = po.GetArg(2);
      std::string posteriors_rspecifier = po.GetArg(3);
      std::string acc_wxfilename = po.GetArg(4);
  
      TransitionModel trans_model;
      {
        bool binary_read;
        Input ki(model_rxfilename, &binary_read);
        trans_model.Read(ki.Stream(), binary_read);
        // discard rest of file.
      }
  
      LdaEstimate lda;
  
      SequentialBaseFloatMatrixReader feature_reader(features_rspecifier);
      RandomAccessPosteriorReader posterior_reader(posteriors_rspecifier);
  
      int32 num_done = 0, num_fail = 0;
      for (;!feature_reader.Done(); feature_reader.Next()) {
        std::string utt = feature_reader.Key();
        if (!posterior_reader.HasKey(utt)) {
          KALDI_WARN << "No posteriors for utterance " << utt;
          num_fail++;
          continue;
        }
        const Posterior &post (posterior_reader.Value(utt));
        const Matrix<BaseFloat> &feats(feature_reader.Value());
  
        if (lda.Dim() == 0)
          lda.Init(trans_model.NumPdfs(), feats.NumCols());
  
        if (feats.NumRows() != static_cast<int32>(post.size())) {
          KALDI_WARN << "Posterior vs. feats size mismatch "
                     << post.size() << " vs. " << feats.NumRows();
          num_fail++;
          continue;
        }
        if (lda.Dim() != 0 && lda.Dim() != feats.NumCols()) {
          KALDI_WARN << "Feature dimension mismatch " << lda.Dim()
                     << " vs. " << feats.NumCols();
          num_fail++;
          continue;
        }
  
        Posterior pdf_post;
        ConvertPosteriorToPdfs(trans_model, post, &pdf_post);
        for (int32 i = 0; i < feats.NumRows(); i++) {
          SubVector<BaseFloat> feat(feats, i);
          for (size_t j = 0; j < pdf_post[i].size(); j++) {
            int32 pdf_id = pdf_post[i][j].first;
            BaseFloat weight = RandPrune(pdf_post[i][j].second, rand_prune);
            if (weight != 0.0) {
              lda.Accumulate(feat, pdf_id, weight);
            }
          }
        }
        num_done++;
        if (num_done % 100 == 0)
          KALDI_LOG << "Done " << num_done << " utterances.";
      }
  
      KALDI_LOG << "Done " << num_done << " files, failed for "
                << num_fail;
  
      Output ko(acc_wxfilename, binary);
      lda.Write(ko.Stream(), binary);
      KALDI_LOG << "Written statistics.";
      return (num_done != 0 ? 0 : 1);
    } catch(const std::exception &e) {
      std::cerr << e.what();
      return -1;
    }
  }