Blame view

src/bin/build-pfile-from-ali.cc 4.3 KB
8dcb6dfcb   Yannick Estève   first commit
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
  // bin/build-pfile-from-ali.cc
  
  // Copyright 2013  Carnegie Mellon University (Author: Yajie Miao)
  //                 Johns Hopkins University (Author: Daniel Povey)
  
  // See ../../COPYING for clarification regarding multiple authors
  //
  // Licensed under the Apache License, Version 2.0 (the "License");
  // you may not use this file except in compliance with the License.
  // You may obtain a copy of the License at
  //
  //  http://www.apache.org/licenses/LICENSE-2.0
  //
  // THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
  // KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED
  // WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE,
  // MERCHANTABLITY OR NON-INFRINGEMENT.
  // See the Apache 2 License for the specific language governing permissions and
  // limitations under the License.
  
  #include <string>
  using std::string;
  #include <vector>
  using std::vector;
  
  #include "base/kaldi-common.h"
  #include "gmm/am-diag-gmm.h"
  #include "hmm/transition-model.h"
  #include "hmm/hmm-utils.h"
  #include "util/common-utils.h"
  
  /** @brief Build pfiles for Neural Network training from alignment.
   * The pfiles contains both the data vectors and their corresponding
   * class/state labels (zero-based).
  */
  
  int main(int argc, char *argv[]) {
    using namespace kaldi;
    typedef kaldi::int32 int32;
    try {
      const char *usage =
          "Build pfiles for neural network training from alignment.
  "
          "Usage:  build-pfile-from-ali [options] <model> <alignments-rspecifier> <feature-rspecifier> 
  "
          "<pfile-wspecifier>
  "
          "e.g.: 
  "
          " build-pfile-from-ali 1.mdl ark:1.ali features 
  "
          " \"|pfile_create -i - -o pfile.1 -f 143 -l 1\" ";
  
      ParseOptions po(usage);
  
      int32 every_nth_frame = 1;
      po.Register("every-nth-frame", &every_nth_frame, "This option will cause it to print "
                  "out only every n'th frame (for subsampling)");
      
      po.Read(argc, argv);
  
      if (po.NumArgs() != 4) {
        po.PrintUsage();
        exit(1);
      }
  
      std::string model_filename = po.GetArg(1),
          alignments_rspecifier = po.GetArg(2),
          feature_rspecifier = po.GetArg(3),
          pfile_wspecifier = po.GetArg(4);
  
      TransitionModel trans_model;
      AmDiagGmm am_gmm;
      {
        bool binary;
        Input ki(model_filename, &binary);
        trans_model.Read(ki.Stream(), binary);
        am_gmm.Read(ki.Stream(), binary);
      }
  
      SequentialBaseFloatMatrixReader feature_reader(feature_rspecifier);
      RandomAccessInt32VectorReader ali_reader(alignments_rspecifier);
  
      int32 num_done = 0, num_no_ali = 0, num_other_error = 0;
      int32 num_utt = 0;
  
      KALDI_ASSERT(every_nth_frame >= 1);
      
      Output ko(pfile_wspecifier, false);
  
      for (; !feature_reader.Done(); feature_reader.Next()) {
        std::string key = feature_reader.Key();
        if (!ali_reader.HasKey(key)) {
          KALDI_WARN << "Did not find alignment for utterance " << key;
          num_no_ali++;
          continue;
        }
  
        const Matrix<BaseFloat> &feats = feature_reader.Value();
        std::vector<int32> alignment = ali_reader.Value(key);
        if (static_cast<int32>(feats.NumRows()) != static_cast<int32>(alignment.size())) {
          KALDI_WARN << "Alignment vector has wrong size " << (alignment.size())
                     << " vs. " << (feats.NumRows());
          num_other_error++;
          continue;
        }
        int32 dim = feats.NumCols();
  
        for (size_t i = 0; i < alignment.size(); i++) {
          if (i % every_nth_frame == 0) {
            std::stringstream ss;
            // Output sentence number and frame number
            ss << num_utt;
            ss << " ";
            ss << (i / every_nth_frame);
            // Output feature vector
            for (int32 d = 0; d < dim; ++d) {
              ss << " ";
              ss << feats(i, d);
            }
            // Output the class label
            ss << " ";
            ss << trans_model.TransitionIdToPdf(alignment[i]);
  
            ko.Stream() << ss.str().c_str();
            ko.Stream() << "
  ";
          }
        }
        num_done ++; num_utt ++;
      }
      ko.Close();
      KALDI_LOG << "Converted " << num_done << " alignments to pfiles.";
      KALDI_LOG << num_no_ali << " utterances have no alignment; "
                << num_other_error << " utterances have other errors.";
    } catch(const std::exception& e) {
      std::cerr << e.what();
      return -1;
    }
  }