Blame view

src/bin/compute-wer-bootci.cc 9.63 KB
8dcb6dfcb   Yannick Estève   first commit
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
  // bin/compute-wer-bootci.cc
  
  // Copyright 2009-2011  Microsoft Corporation
  //                2014  Johns Hopkins University (authors: Jan Trmal, Daniel Povey)
  //                2015  Brno Universiry of technology (author: Karel Vesely)
  //                2016  Nicolas Serrano
  
  // See ../../COPYING for clarification regarding multiple authors
  //
  // Licensed under the Apache License, Version 2.0 (the "License");
  // you may not use this file except in compliance with the License.
  // You may obtain a copy of the License at
  //
  //  http://www.apache.org/licenses/LICENSE-2.0
  //
  // THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
  // KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED
  // WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE,
  // MERCHANTABLITY OR NON-INFRINGEMENT.
  // See the Apache 2 License for the specific language governing permissions and
  // limitations under the License.
  
  #include "base/kaldi-common.h"
  #include "util/common-utils.h"
  #include "util/parse-options.h"
  #include "tree/context-dep.h"
  #include "util/edit-distance.h"
  #include "base/kaldi-math.h"
  
  namespace kaldi {
  
  void GetEditsSingleHyp( const std::string &hyp_rspecifier,
        const std::string &ref_rspecifier,
        const std::string &mode,
        std::vector<std::pair<int32, int32> > & edit_word_per_hyp) {
  
      // Both text and integers are loaded as vector of strings,
      SequentialTokenVectorReader ref_reader(ref_rspecifier);
      RandomAccessTokenVectorReader hyp_reader(hyp_rspecifier);
      int32 num_words = 0, word_errs = 0, num_ins = 0, num_del = 0, num_sub = 0;
  
      // Main loop, store WER stats per hyp,
      for (; !ref_reader.Done(); ref_reader.Next()) {
        std::string key = ref_reader.Key();
        const std::vector<std::string> &ref_sent = ref_reader.Value();
        std::vector<std::string> hyp_sent;
        if (!hyp_reader.HasKey(key)) {
          if (mode == "strict")
            KALDI_ERR << "No hypothesis for key " << key << " and strict "
                "mode specifier.";
          if (mode == "present")  // do not score this one.
            continue;
        } else {
          hyp_sent = hyp_reader.Value(key);
        }
        num_words = ref_sent.size();
        word_errs = LevenshteinEditDistance(ref_sent, hyp_sent,
                                              &num_ins, &num_del, &num_sub);
        edit_word_per_hyp.push_back(std::pair<int32, int32>(word_errs, num_words));
      }
  }
  
  void GetEditsDualHyp(const std::string &hyp_rspecifier,
        const std::string &hyp_rspecifier2,
        const std::string &ref_rspecifier,
        const std::string &mode,
        std::vector<std::pair<int32, int32> > & edit_word_per_hyp,
        std::vector<std::pair<int32, int32> > & edit_word_per_hyp2) {
  
      // Both text and integers are loaded as vector of strings,
      SequentialTokenVectorReader ref_reader(ref_rspecifier);
      RandomAccessTokenVectorReader hyp_reader(hyp_rspecifier);
      RandomAccessTokenVectorReader hyp_reader2(hyp_rspecifier2);
      int32 num_words = 0, word_errs = 0,
              num_ins = 0, num_del = 0, num_sub = 0;
  
      // Main loop, store WER stats per hyp,
      for (; !ref_reader.Done(); ref_reader.Next()) {
        std::string key = ref_reader.Key();
        const std::vector<std::string> &ref_sent = ref_reader.Value();
        std::vector<std::string> hyp_sent, hyp_sent2;
        if (mode == "strict" &&
                (!hyp_reader.HasKey(key) || !hyp_reader2.HasKey(key))) {
            KALDI_ERR << "No hypothesis for key " << key << " in both transcripts "
                "comparison is not possible.";
        } else if (mode == "present" &&
                (!hyp_reader.HasKey(key) || !hyp_reader2.HasKey(key)))
            continue;
  
        num_words = ref_sent.size();
  
        //all mode, if a hypothesis is not present, consider as an error
        if(hyp_reader.HasKey(key)){
          hyp_sent = hyp_reader.Value(key);
          word_errs = LevenshteinEditDistance(ref_sent, hyp_sent,
                                              &num_ins, &num_del, &num_sub);
        }
        else
          word_errs = num_words;
        edit_word_per_hyp.push_back(std::pair<int32, int32>(word_errs, num_words));
  
        if(hyp_reader2.HasKey(key)){
          hyp_sent2 = hyp_reader2.Value(key);
          word_errs = LevenshteinEditDistance(ref_sent, hyp_sent2,
                                              &num_ins, &num_del, &num_sub);
        }
        else
          word_errs = num_words;
        edit_word_per_hyp2.push_back(std::pair<int32, int32>(word_errs, num_words));
      }
  }
  
  void GetBootstrapWERInterval(
        const std::vector<std::pair<int32, int32> > & edit_word_per_hyp,
        int32 replications,
        BaseFloat *mean, BaseFloat *interval) {
      BaseFloat wer_accum = 0.0, wer_mult_accum = 0.0;
  
      for (int32 i = 0; i < replications; ++i) {
        int32 num_words = 0, word_errs = 0;
        for (int32 j = 0; j < edit_word_per_hyp.size(); ++j) {
          int32 random_pos = kaldi::RandInt(0, edit_word_per_hyp.size() - 1);
          word_errs += edit_word_per_hyp[random_pos].first;
          num_words += edit_word_per_hyp[random_pos].second;
          }
  
        BaseFloat wer_rep = static_cast<BaseFloat>(word_errs) / num_words;
        wer_accum += wer_rep;
        wer_mult_accum += wer_rep*wer_rep;
      }
  
      // Compute mean WER and std WER
      *mean = wer_accum / replications;
      *interval = 1.96*sqrt(wer_mult_accum/replications-(*mean)*(*mean));
  }
  
  void GetBootstrapWERTwoSystemComparison(
        const std::vector<std::pair<int32, int32> > & edit_word_per_hyp,
        const std::vector<std::pair<int32, int32> > & edit_word_per_hyp2,
        int32 replications, BaseFloat *p_improv) {
      int32 improv_accum = 0.0;
  
      for (int32 i = 0; i < replications; ++i) {
        int32 word_errs = 0;
        for (int32 j = 0; j < edit_word_per_hyp.size(); ++j) {
          int32 random_pos = kaldi::RandInt(0, edit_word_per_hyp.size() - 1);
          word_errs += edit_word_per_hyp[random_pos].first -
                          edit_word_per_hyp2[random_pos].first;
          }
        if(word_errs > 0)
          ++improv_accum;
      }
      // Compute mean WER and std WER
      *p_improv = static_cast<BaseFloat>(improv_accum) / replications;
  }
  
  } //namespace kaldi
  
  int main(int argc, char *argv[]) {
    using namespace kaldi;
    typedef kaldi::int32 int32;
  
    try {
      const char *usage =
        "Compute a bootstrapping of WER to extract the 95% confidence interval.
  "
        "Take a reference and a transcription file, in integer or text format,
  "
        "and outputs overall WER statistics to standard output along with its
  "
        "confidence interval using the bootstrap method of Bisani and Ney.
  "
        "If a second transcription file corresponding to the same reference is
  "
        "provided, a bootstrap comparison of the two transcription is performed
  "
        "to estimate the probability of improvement.
  "
        "
  "
        "Usage: compute-wer-bootci [options] <ref-rspecifier> <hyp-rspecifier> [<hyp2-rspecifier>]
  "
        "E.g.: compute-wer-bootci --mode=present ark:data/train/text ark:hyp_text
  "
        "or compute-wer-bootci ark:data/train/text ark:hyp_text ark:hyp_text2
  "
        "See also: compute-wer
  ";
  
      ParseOptions po(usage);
  
      std::string mode = "strict";
      po.Register("mode", &mode,
                  "Scoring mode: \"present\"|\"all\"|\"strict\":
  "
                  "  \"present\" means score those we have transcriptions for
  "
                  "  \"all\" means treat absent transcriptions as empty
  "
                  "  \"strict\" means die if all in ref not also in hyp");
  
      int32 replications = 10000;
      po.Register("replications", &replications,
              "Number of replications to compute the intervals");
  
      po.Read(argc, argv);
  
      if (po.NumArgs() < 2 || po.NumArgs() > 3) {
        po.PrintUsage();
        exit(1);
      }
  
      std::string ref_rspecifier = po.GetArg(1);
      std::string hyp_rspecifier = po.GetArg(2);
      std::string hyp2_rspecifier = (po.NumArgs() == 3?po.GetArg(3):"");
  
      if (mode != "strict" && mode != "present" && mode != "all") {
        KALDI_ERR <<
            "--mode option invalid: expected \"present\"|\"all\"|\"strict\", got "
            << mode;
      }
  
      //Get editions per each utterance
      std::vector<std::pair<int32, int32> > edit_word_per_hyp, edit_word_per_hyp2;
      if(hyp2_rspecifier.empty())
        GetEditsSingleHyp(hyp_rspecifier, ref_rspecifier, mode, edit_word_per_hyp);
      else
        GetEditsDualHyp(hyp_rspecifier, hyp2_rspecifier, ref_rspecifier, mode,
                edit_word_per_hyp, edit_word_per_hyp2);
  
      //Extract WER for a number of replications of the same size
      //as the hypothesis extracted
      BaseFloat mean_wer = 0.0, interval = 0.0,
                mean_wer2 = 0.0, interval2 = 0.0,
                p_improv = 0.0;
  
      GetBootstrapWERInterval(edit_word_per_hyp, replications,
              &mean_wer, &interval);
  
      if(!hyp2_rspecifier.empty()) {
        GetBootstrapWERInterval(edit_word_per_hyp2, replications,
                &mean_wer2, &interval2);
  
        GetBootstrapWERTwoSystemComparison(edit_word_per_hyp, edit_word_per_hyp2,
               replications, &p_improv);
      }
  
      // Print the output,
      std::cout.precision(2);
      std::cerr.precision(2);
      std::cout << "Set1: %WER " << std::fixed << 100*mean_wer <<
                " 95% Conf Interval [ " << 100*mean_wer-100*interval <<
                ", " << 100*mean_wer+100*interval << " ]" << '
  ';
  
      if(!hyp2_rspecifier.empty()) {
          std::cout << "Set2: %WER " << std::fixed << 100*mean_wer2 <<
              " 95% Conf Interval [ " << 100*mean_wer2-100*interval2 <<
              ", " << 100*mean_wer2+100*interval2 << " ]" << '
  ';
  
          std::cout << "Probability of Set2 improving Set1: " << std::fixed <<
              100*p_improv << '
  ';
      }
  
      return 0;
    } catch(const std::exception &e) {
      std::cerr << e.what();
      return -1;
    }
  }