Blame view

src/bin/decode-faster-mapped.cc 6.16 KB
8dcb6dfcb   Yannick Estève   first commit
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
  // bin/decode-faster-mapped.cc
  
  // Copyright 2009-2011  Microsoft Corporation
  //                2013  Johns Hopkins University (author: Daniel Povey)
  
  // See ../../COPYING for clarification regarding multiple authors
  //
  // Licensed under the Apache License, Version 2.0 (the "License");
  // you may not use this file except in compliance with the License.
  // You may obtain a copy of the License at
  //
  //  http://www.apache.org/licenses/LICENSE-2.0
  //
  // THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
  // KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED
  // WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE,
  // MERCHANTABLITY OR NON-INFRINGEMENT.
  // See the Apache 2 License for the specific language governing permissions and
  // limitations under the License.
  
  
  #include "base/kaldi-common.h"
  #include "util/common-utils.h"
  #include "tree/context-dep.h"
  #include "hmm/transition-model.h"
  #include "fstext/fstext-lib.h"
  #include "decoder/faster-decoder.h"
  #include "decoder/decodable-matrix.h"
  #include "base/timer.h"
  #include "lat/kaldi-lattice.h" // for {Compact}LatticeArc
  
  int main(int argc, char *argv[]) {
    try {
      using namespace kaldi;
      typedef kaldi::int32 int32;
      using fst::SymbolTable;
      using fst::VectorFst;
      using fst::StdArc;
  
      const char *usage =
          "Decode, reading log-likelihoods as matrices
  "
          " (model is needed only for the integer mappings in its transition-model)
  "
          "Usage:   decode-faster-mapped [options] <model-in> <fst-in> "
          "<loglikes-rspecifier> <words-wspecifier> [<alignments-wspecifier>]
  ";
      ParseOptions po(usage);
      bool binary = true;
      BaseFloat acoustic_scale = 0.1;
      bool allow_partial = true;
      std::string word_syms_filename;
      FasterDecoderOptions decoder_opts;
      decoder_opts.Register(&po, true);  // true == include obscure settings.
      po.Register("binary", &binary, "Write output in binary mode");
      po.Register("acoustic-scale", &acoustic_scale, "Scaling factor for acoustic likelihoods");
      po.Register("allow-partial", &allow_partial, "Produce output even when final state was not reached");
      po.Register("word-symbol-table", &word_syms_filename, "Symbol table for words [for debug output]");
  
      po.Read(argc, argv);
  
      if (po.NumArgs() < 4 || po.NumArgs() > 5) {
        po.PrintUsage();
        exit(1);
      }
  
      std::string model_in_filename = po.GetArg(1),
          fst_in_filename = po.GetArg(2),
          loglikes_rspecifier = po.GetArg(3),
          words_wspecifier = po.GetArg(4),
          alignment_wspecifier = po.GetOptArg(5);
  
      TransitionModel trans_model;
      ReadKaldiObject(model_in_filename, &trans_model);
  
      Int32VectorWriter words_writer(words_wspecifier);
  
      Int32VectorWriter alignment_writer(alignment_wspecifier);
  
      fst::SymbolTable *word_syms = NULL;
      if (word_syms_filename != "") {
        word_syms = fst::SymbolTable::ReadText(word_syms_filename);
        if (!word_syms)
          KALDI_ERR << "Could not read symbol table from file "<<word_syms_filename;
      }
  
      SequentialBaseFloatMatrixReader loglikes_reader(loglikes_rspecifier);
  
      // It's important that we initialize decode_fst after loglikes_reader, as it
      // can prevent crashes on systems installed without enough virtual memory.
      // It has to do with what happens on UNIX systems if you call fork() on a
      // large process: the page-table entries are duplicated, which requires a
      // lot of virtual memory.
      VectorFst<StdArc> *decode_fst = fst::ReadFstKaldi(fst_in_filename);
  
      BaseFloat tot_like = 0.0;
      kaldi::int64 frame_count = 0;
      int num_success = 0, num_fail = 0;
      FasterDecoder decoder(*decode_fst, decoder_opts);
  
      Timer timer;
  
      for (; !loglikes_reader.Done(); loglikes_reader.Next()) {
        std::string key = loglikes_reader.Key();
        const Matrix<BaseFloat> &loglikes (loglikes_reader.Value());
  
        if (loglikes.NumRows() == 0) {
          KALDI_WARN << "Zero-length utterance: " << key;
          num_fail++;
          continue;
        }
  
        DecodableMatrixScaledMapped decodable(trans_model, loglikes, acoustic_scale);
        decoder.Decode(&decodable);
  
        VectorFst<LatticeArc> decoded;  // linear FST.
  
        if ( (allow_partial || decoder.ReachedFinal())
             && decoder.GetBestPath(&decoded) ) {
          num_success++;
          if (!decoder.ReachedFinal())
            KALDI_WARN << "Decoder did not reach end-state, outputting partial traceback.";
  
          std::vector<int32> alignment;
          std::vector<int32> words;
          LatticeWeight weight;
          frame_count += loglikes.NumRows();
  
          GetLinearSymbolSequence(decoded, &alignment, &words, &weight);
  
          words_writer.Write(key, words);
          if (alignment_writer.IsOpen())
            alignment_writer.Write(key, alignment);
          if (word_syms != NULL) {
            std::cerr << key << ' ';
            for (size_t i = 0; i < words.size(); i++) {
              std::string s = word_syms->Find(words[i]);
              if (s == "")
                KALDI_ERR << "Word-id " << words[i] <<" not in symbol table.";
              std::cerr << s << ' ';
            }
            std::cerr << '
  ';
          }
          BaseFloat like = -weight.Value1() -weight.Value2();
          tot_like += like;
          KALDI_LOG << "Log-like per frame for utterance " << key << " is "
                    << (like / loglikes.NumRows()) << " over "
                    << loglikes.NumRows() << " frames.";
  
        } else {
          num_fail++;
          KALDI_WARN << "Did not successfully decode utterance " << key
                     << ", len = " << loglikes.NumRows();
        }
      }
  
      double elapsed = timer.Elapsed();
      KALDI_LOG << "Time taken [excluding initialization] "<< elapsed
                << "s: real-time factor assuming 100 frames/sec is "
                << (elapsed*100.0/frame_count);
      KALDI_LOG << "Done " << num_success << " utterances, failed for "
                << num_fail;
      KALDI_LOG << "Overall log-likelihood per frame is " << (tot_like/frame_count)
                << " over " << frame_count << " frames.";
  
      delete word_syms;
      delete decode_fst;
      if (num_success != 0) return 0;
      else return 1;
    } catch(const std::exception &e) {
      std::cerr << e.what();
      return -1;
    }
  }