Blame view
src/bin/matrix-sum.cc
12.5 KB
8dcb6dfcb first commit |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 |
// bin/matrix-sum.cc // Copyright 2012-2014 Johns Hopkins University (author: Daniel Povey) // 2014 Vimal Manohar // See ../../COPYING for clarification regarding multiple authors // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY // KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED // WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE, // MERCHANTABLITY OR NON-INFRINGEMENT. // See the Apache 2 License for the specific language governing permissions and // limitations under the License. #include "base/kaldi-common.h" #include "util/common-utils.h" #include "matrix/kaldi-matrix.h" namespace kaldi { // sums a bunch of archives to produce one archive // for back-compatibility with an older form, we support scaling // of the first two input archives. int32 TypeOneUsage(const ParseOptions &po, BaseFloat scale1, BaseFloat scale2) { int32 num_args = po.NumArgs(); std::string matrix_in_fn1 = po.GetArg(1), matrix_out_fn = po.GetArg(num_args); // Output matrix BaseFloatMatrixWriter matrix_writer(matrix_out_fn); // Input matrices SequentialBaseFloatMatrixReader matrix_reader1(matrix_in_fn1); std::vector<RandomAccessBaseFloatMatrixReader*> matrix_readers(num_args-2, static_cast<RandomAccessBaseFloatMatrixReader*>(NULL)); std::vector<std::string> matrix_in_fns(num_args-2); for (int32 i = 2; i < num_args; ++i) { matrix_readers[i-2] = new RandomAccessBaseFloatMatrixReader(po.GetArg(i)); matrix_in_fns[i-2] = po.GetArg(i); } int32 n_utts = 0, n_total_matrices = 0, n_success = 0, n_missing = 0, n_other_errors = 0; for (; !matrix_reader1.Done(); matrix_reader1.Next()) { std::string key = matrix_reader1.Key(); Matrix<BaseFloat> matrix1 = matrix_reader1.Value(); matrix_reader1.FreeCurrent(); n_utts++; n_total_matrices++; matrix1.Scale(scale1); Matrix<BaseFloat> matrix_out(matrix1); for (int32 i = 0; i < num_args-2; ++i) { if (matrix_readers[i]->HasKey(key)) { Matrix<BaseFloat> matrix2 = matrix_readers[i]->Value(key); n_total_matrices++; if (SameDim(matrix2, matrix_out)) { BaseFloat scale = (i == 0 ? scale2 : 1.0); // note: i == 0 corresponds to the 2nd input archive. matrix_out.AddMat(scale, matrix2, kNoTrans); } else { KALDI_WARN << "Dimension mismatch for utterance " << key << " : " << matrix2.NumRows() << " by " << matrix2.NumCols() << " for " << "system " << (i + 2) << ", rspecifier: " << matrix_in_fns[i] << " vs " << matrix_out.NumRows() << " by " << matrix_out.NumCols() << " primary matrix, rspecifier:" << matrix_in_fn1; n_other_errors++; } } else { KALDI_WARN << "No matrix found for utterance " << key << " for " << "system " << (i + 2) << ", rspecifier: " << matrix_in_fns[i]; n_missing++; } } matrix_writer.Write(key, matrix_out); n_success++; } KALDI_LOG << "Processed " << n_utts << " utterances: with a total of " << n_total_matrices << " matrices across " << (num_args-1) << " different systems"; KALDI_LOG << "Produced output for " << n_success << " utterances; " << n_missing << " total missing matrices"; DeletePointers(&matrix_readers); return (n_success != 0 && n_missing < (n_success - n_missing)) ? 0 : 1; } int32 TypeOneUsageAverage(const ParseOptions &po) { int32 num_args = po.NumArgs(); std::string matrix_in_fn1 = po.GetArg(1), matrix_out_fn = po.GetArg(num_args); BaseFloat scale = 1.0 / (num_args - 1); // Output matrix BaseFloatMatrixWriter matrix_writer(matrix_out_fn); // Input matrices SequentialBaseFloatMatrixReader matrix_reader1(matrix_in_fn1); std::vector<RandomAccessBaseFloatMatrixReader*> matrix_readers(num_args-2, static_cast<RandomAccessBaseFloatMatrixReader*>(NULL)); std::vector<std::string> matrix_in_fns(num_args-2); for (int32 i = 2; i < num_args; ++i) { matrix_readers[i-2] = new RandomAccessBaseFloatMatrixReader(po.GetArg(i)); matrix_in_fns[i-2] = po.GetArg(i); } int32 n_utts = 0, n_total_matrices = 0, n_success = 0, n_missing = 0, n_other_errors = 0; for (; !matrix_reader1.Done(); matrix_reader1.Next()) { std::string key = matrix_reader1.Key(); Matrix<BaseFloat> matrix1 = matrix_reader1.Value(); matrix_reader1.FreeCurrent(); n_utts++; n_total_matrices++; matrix1.Scale(scale); Matrix<BaseFloat> matrix_out(matrix1); for (int32 i = 0; i < num_args-2; ++i) { if (matrix_readers[i]->HasKey(key)) { Matrix<BaseFloat> matrix2 = matrix_readers[i]->Value(key); n_total_matrices++; if (SameDim(matrix2, matrix_out)) { matrix_out.AddMat(scale, matrix2, kNoTrans); } else { KALDI_WARN << "Dimension mismatch for utterance " << key << " : " << matrix2.NumRows() << " by " << matrix2.NumCols() << " for " << "system " << (i + 2) << ", rspecifier: " << matrix_in_fns[i] << " vs " << matrix_out.NumRows() << " by " << matrix_out.NumCols() << " primary matrix, rspecifier:" << matrix_in_fn1; n_other_errors++; } } else { KALDI_WARN << "No matrix found for utterance " << key << " for " << "system " << (i + 2) << ", rspecifier: " << matrix_in_fns[i]; n_missing++; } } matrix_writer.Write(key, matrix_out); n_success++; } KALDI_LOG << "Processed " << n_utts << " utterances: with a total of " << n_total_matrices << " matrices across " << (num_args-1) << " different systems"; KALDI_LOG << "Produced output for " << n_success << " utterances; " << n_missing << " total missing matrices"; DeletePointers(&matrix_readers); return (n_success != 0 && n_missing < (n_success - n_missing)) ? 0 : 1; } int32 TypeTwoUsage(const ParseOptions &po, bool binary) { KALDI_ASSERT(po.NumArgs() == 2); KALDI_ASSERT(ClassifyRspecifier(po.GetArg(1), NULL, NULL) != kNoRspecifier && "matrix-sum: first argument must be an rspecifier"); // if next assert fails it would be bug in the code as otherwise we shouldn't // be called. KALDI_ASSERT(ClassifyWspecifier(po.GetArg(2), NULL, NULL, NULL) == kNoWspecifier); SequentialBaseFloatMatrixReader mat_reader(po.GetArg(1)); Matrix<double> sum; int32 num_done = 0, num_err = 0; for (; !mat_reader.Done(); mat_reader.Next()) { const Matrix<BaseFloat> &mat = mat_reader.Value(); if (mat.NumRows() == 0) { KALDI_WARN << "Zero matrix input for key " << mat_reader.Key(); num_err++; } else { if (sum.NumRows() == 0) sum.Resize(mat.NumRows(), mat.NumCols()); if (sum.NumRows() != mat.NumRows() || sum.NumCols() != mat.NumCols()) { KALDI_WARN << "Dimension mismatch for key " << mat_reader.Key() << ": " << mat.NumRows() << " by " << mat.NumCols() << " vs. " << sum.NumRows() << " by " << sum.NumCols(); num_err++; } else { Matrix<double> dmat(mat); sum.AddMat(1.0, dmat, kNoTrans); num_done++; } } } Matrix<BaseFloat> sum_float(sum); WriteKaldiObject(sum_float, po.GetArg(2), binary); KALDI_LOG << "Summed " << num_done << " matrices, " << num_err << " with errors; wrote sum to " << PrintableWxfilename(po.GetArg(2)); return (num_done > 0 && num_err < num_done) ? 0 : 1; } // sum a bunch of single files to produce a single file [including // extended filenames, of course] int32 TypeThreeUsage(const ParseOptions &po, bool binary, bool average) { KALDI_ASSERT(po.NumArgs() >= 2); for (int32 i = 1; i < po.NumArgs(); i++) { if (ClassifyRspecifier(po.GetArg(i), NULL, NULL) != kNoRspecifier) { KALDI_ERR << "Wrong usage (type 3): if first and last arguments are not " << "tables, the intermediate arguments must not be tables."; } } if (ClassifyWspecifier(po.GetArg(po.NumArgs()), NULL, NULL, NULL) != kNoWspecifier) { KALDI_ERR << "Wrong usage (type 3): if first and last arguments are not " << "tables, the intermediate arguments must not be tables."; } Matrix<BaseFloat> sum; for (int32 i = 1; i < po.NumArgs(); i++) { Matrix<BaseFloat> this_mat; ReadKaldiObject(po.GetArg(i), &this_mat); if (sum.NumRows() < this_mat.NumRows() || sum.NumCols() < this_mat.NumCols()) sum.Resize(std::max(sum.NumRows(), this_mat.NumRows()), std::max(sum.NumCols(), this_mat.NumCols()), kCopyData); sum.AddMat(1.0, this_mat); } if (average) sum.Scale(1.0 / (po.NumArgs() - 1)); WriteKaldiObject(sum, po.GetArg(po.NumArgs()), binary); KALDI_LOG << "Summed " << (po.NumArgs() - 1) << " matrices; " << "wrote sum to " << PrintableWxfilename(po.GetArg(po.NumArgs())); return 0; } } // namespace kaldi int main(int argc, char *argv[]) { try { using namespace kaldi; const char *usage = "Add matrices (supports various forms) " " " "Type one usage: " " matrix-sum [options] <matrix-in-rspecifier1> [<matrix-in-rspecifier2>" " <matrix-in-rspecifier3> ...] <matrix-out-wspecifier> " " e.g.: matrix-sum ark:1.weights ark:2.weights ark:combine.weights " " This usage supports the --scale1 and --scale2 options to scale the " " first two input tables. " "Type two usage (sums a single table input to produce a single output): " " matrix-sum [options] <matrix-in-rspecifier> <matrix-out-wxfilename> " " e.g.: matrix-sum --binary=false mats.ark sum.mat " "Type three usage (sums or averages single-file inputs to produce " "a single output): " " matrix-sum [options] <matrix-in-rxfilename1> <matrix-in-rxfilename2> ..." " <matrix-out-wxfilename> " " e.g.: matrix-sum --binary=false 1.mat 2.mat 3.mat sum.mat " "See also: matrix-sum-rows, copy-matrix "; BaseFloat scale1 = 1.0, scale2 = 1.0; bool average = false; bool binary = true; ParseOptions po(usage); po.Register("scale1", &scale1, "Scale applied to first matrix " "(only for type one usage)"); po.Register("scale2", &scale2, "Scale applied to second matrix " "(only for type one usage)"); po.Register("binary", &binary, "If true, write output as binary (only " "relevant for usage types two or three"); po.Register("average", &average, "If true, compute average instead of " "sum; currently compatible with type 3 or type 1 usage."); po.Read(argc, argv); int32 N = po.NumArgs(), exit_status; if (po.NumArgs() >= 2 && ClassifyWspecifier(po.GetArg(N), NULL, NULL, NULL) != kNoWspecifier) { if (average) // average option with type one usage."; exit_status = TypeOneUsageAverage(po); else // output to table. exit_status = TypeOneUsage(po, scale1, scale2); } else if (po.NumArgs() == 2 && ClassifyRspecifier(po.GetArg(1), NULL, NULL) != kNoRspecifier && ClassifyWspecifier(po.GetArg(N), NULL, NULL, NULL) == kNoWspecifier) { KALDI_ASSERT(scale1 == 1.0 && scale2 == 1.0); if (average) KALDI_ERR << "--average option not compatible with type two usage."; // input from a single table, output not to table. exit_status = TypeTwoUsage(po, binary); } else if (po.NumArgs() >= 2 && ClassifyRspecifier(po.GetArg(1), NULL, NULL) == kNoRspecifier && ClassifyWspecifier(po.GetArg(N), NULL, NULL, NULL) == kNoWspecifier) { KALDI_ASSERT(scale1 == 1.0 && scale2 == 1.0); // summing flat files. exit_status = TypeThreeUsage(po, binary, average); } else { po.PrintUsage(); exit(1); } return exit_status; } catch(const std::exception &e) { std::cerr << e.what(); return -1; } } |