Blame view
src/chain/chain-den-graph.cc
15.4 KB
8dcb6dfcb first commit |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 |
// chain/chain-den-graph.cc // Copyright 2015-2018 Johns Hopkins University (author: Daniel Povey) // See ../../COPYING for clarification regarding multiple authors // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY // KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED // WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE, // MERCHANTABLITY OR NON-INFRINGEMENT. // See the Apache 2 License for the specific language governing permissions and // limitations under the License. #include "chain/chain-den-graph.h" #include "hmm/hmm-utils.h" #include "fstext/push-special.h" namespace kaldi { namespace chain { DenominatorGraph::DenominatorGraph(const fst::StdVectorFst &fst, int32 num_pdfs): num_pdfs_(num_pdfs) { SetTransitions(fst, num_pdfs); SetInitialProbs(fst); } const Int32Pair* DenominatorGraph::BackwardTransitions() const { return backward_transitions_.Data(); } const Int32Pair* DenominatorGraph::ForwardTransitions() const { return forward_transitions_.Data(); } const DenominatorGraphTransition* DenominatorGraph::Transitions() const { return transitions_.Data(); } const CuVector<BaseFloat>& DenominatorGraph::InitialProbs() const { return initial_probs_; } void DenominatorGraph::SetTransitions(const fst::StdVectorFst &fst, int32 num_pdfs) { int32 num_states = fst.NumStates(); std::vector<std::vector<DenominatorGraphTransition> > transitions_out(num_states), transitions_in(num_states); for (int32 s = 0; s < num_states; s++) { for (fst::ArcIterator<fst::StdVectorFst> aiter(fst, s); !aiter.Done(); aiter.Next()) { const fst::StdArc &arc = aiter.Value(); DenominatorGraphTransition transition; transition.transition_prob = exp(-arc.weight.Value()); transition.pdf_id = arc.ilabel - 1; transition.hmm_state = arc.nextstate; KALDI_ASSERT(transition.pdf_id >= 0 && transition.pdf_id < num_pdfs); transitions_out[s].push_back(transition); // now the reverse transition. transition.hmm_state = s; transitions_in[arc.nextstate].push_back(transition); } } std::vector<Int32Pair> forward_transitions(num_states); std::vector<Int32Pair> backward_transitions(num_states); std::vector<DenominatorGraphTransition> transitions; for (int32 s = 0; s < num_states; s++) { forward_transitions[s].first = static_cast<int32>(transitions.size()); transitions.insert(transitions.end(), transitions_out[s].begin(), transitions_out[s].end()); forward_transitions[s].second = static_cast<int32>(transitions.size()); } for (int32 s = 0; s < num_states; s++) { backward_transitions[s].first = static_cast<int32>(transitions.size()); transitions.insert(transitions.end(), transitions_in[s].begin(), transitions_in[s].end()); backward_transitions[s].second = static_cast<int32>(transitions.size()); } forward_transitions_ = forward_transitions; backward_transitions_ = backward_transitions; transitions_ = transitions; } void DenominatorGraph::SetInitialProbs(const fst::StdVectorFst &fst) { // we set only the start-state to have probability mass, and then 100 // iterations of HMM propagation, over which we average the probabilities. // initial probs won't end up making a huge difference as we won't be using // derivatives from the first few frames, so this isn't 100% critical. int32 num_iters = 100; int32 num_states = fst.NumStates(); // we normalize each state so that it sums to one (including // final-probs)... this is needed because the 'chain' code doesn't // have transition probabilities. Vector<double> normalizing_factor(num_states); for (int32 s = 0; s < num_states; s++) { double tot_prob = exp(-fst.Final(s).Value()); for (fst::ArcIterator<fst::StdVectorFst> aiter(fst, s); !aiter.Done(); aiter.Next()) { tot_prob += exp(-aiter.Value().weight.Value()); } KALDI_ASSERT(tot_prob > 0.0 && tot_prob < 100.0); normalizing_factor(s) = 1.0 / tot_prob; } Vector<double> cur_prob(num_states), next_prob(num_states), avg_prob(num_states); cur_prob(fst.Start()) = 1.0; for (int32 iter = 0; iter < num_iters; iter++) { avg_prob.AddVec(1.0 / num_iters, cur_prob); for (int32 s = 0; s < num_states; s++) { double prob = cur_prob(s) * normalizing_factor(s); for (fst::ArcIterator<fst::StdVectorFst> aiter(fst, s); !aiter.Done(); aiter.Next()) { const fst::StdArc &arc = aiter.Value(); next_prob(arc.nextstate) += prob * exp(-arc.weight.Value()); } } cur_prob.Swap(&next_prob); next_prob.SetZero(); // Renormalize, beause the HMM won't sum to one even after the // previous normalization (due to final-probs). cur_prob.Scale(1.0 / cur_prob.Sum()); } Vector<BaseFloat> avg_prob_float(avg_prob); initial_probs_ = avg_prob_float; } void DenominatorGraph::GetNormalizationFst(const fst::StdVectorFst &ifst, fst::StdVectorFst *ofst) { KALDI_ASSERT(ifst.NumStates() == initial_probs_.Dim()); if (&ifst != ofst) *ofst = ifst; int32 new_initial_state = ofst->AddState(); Vector<BaseFloat> initial_probs(initial_probs_); for (int32 s = 0; s < initial_probs_.Dim(); s++) { BaseFloat initial_prob = initial_probs(s); KALDI_ASSERT(initial_prob > 0.0); fst::StdArc arc(0, 0, fst::TropicalWeight(-log(initial_prob)), s); ofst->AddArc(new_initial_state, arc); ofst->SetFinal(s, fst::TropicalWeight::One()); } ofst->SetStart(new_initial_state); fst::RmEpsilon(ofst); fst::ArcSort(ofst, fst::ILabelCompare<fst::StdArc>()); } void MapFstToPdfIdsPlusOne(const TransitionModel &trans_model, fst::StdVectorFst *fst) { int32 num_states = fst->NumStates(); for (int32 s = 0; s < num_states; s++) { for (fst::MutableArcIterator<fst::StdVectorFst> aiter(fst, s); !aiter.Done(); aiter.Next()) { fst::StdArc arc = aiter.Value(); KALDI_ASSERT(arc.ilabel == arc.olabel); if (arc.ilabel > 0) { arc.ilabel = trans_model.TransitionIdToPdf(arc.ilabel) + 1; arc.olabel = arc.ilabel; aiter.SetValue(arc); } } } } void MinimizeAcceptorNoPush(fst::StdVectorFst *fst) { BaseFloat delta = fst::kDelta * 10.0; // use fairly loose delta for // aggressive minimimization. fst::ArcMap(fst, fst::QuantizeMapper<fst::StdArc>(delta)); fst::EncodeMapper<fst::StdArc> encoder(fst::kEncodeLabels | fst::kEncodeWeights, fst::ENCODE); fst::Encode(fst, &encoder); fst::internal::AcceptorMinimize(fst); fst::Decode(fst, encoder); } // This static function, used in CreateDenominatorFst, sorts an // fst's states in decreasing order of number of transitions (into + out of) // the state. The aim is to have states that have a lot of transitions // either into them or out of them, be numbered earlier, so hopefully // they will be scheduled first and won't delay the computation static void SortOnTransitionCount(fst::StdVectorFst *fst) { // negative_num_transitions[i] will contain (before sorting), the pair // ( -(num-transitions-into(i) + num-transition-out-of(i)), i) int32 num_states = fst->NumStates(); std::vector<std::pair<int32, int32> > negative_num_transitions(num_states); for (int32 i = 0; i < num_states; i++) { negative_num_transitions[i].first = 0; negative_num_transitions[i].second = i; } for (int32 i = 0; i < num_states; i++) { for (fst::ArcIterator<fst::StdVectorFst> aiter(*fst, i); !aiter.Done(); aiter.Next()) { negative_num_transitions[i].first--; negative_num_transitions[aiter.Value().nextstate].first--; } } std::sort(negative_num_transitions.begin(), negative_num_transitions.end()); std::vector<fst::StdArc::StateId> order(num_states); for (int32 i = 0; i < num_states; i++) order[negative_num_transitions[i].second] = i; fst::StateSort(fst, order); } void DenGraphMinimizeWrapper(fst::StdVectorFst *fst) { for (int32 i = 1; i <= 3; i++) { fst::StdVectorFst fst_reversed; fst::Reverse(*fst, &fst_reversed); fst::PushSpecial(&fst_reversed, fst::kDelta * 0.01); MinimizeAcceptorNoPush(&fst_reversed); fst::Reverse(fst_reversed, fst); KALDI_LOG << "Number of states and arcs in transition-id FST after reversed " << "minimization is " << fst->NumStates() << " and " << NumArcs(*fst) << " (pass " << i << ")"; fst::PushSpecial(fst, fst::kDelta * 0.01); MinimizeAcceptorNoPush(fst); KALDI_LOG << "Number of states and arcs in transition-id FST after regular " << "minimization is " << fst->NumStates() << " and " << NumArcs(*fst) << " (pass " << i << ")"; } fst::RmEpsilon(fst); KALDI_LOG << "Number of states and arcs in transition-id FST after " << "removing any epsilons introduced by reversal is " << fst->NumStates() << " and " << NumArcs(*fst); fst::PushSpecial(fst, fst::kDelta * 0.01); } static void PrintDenGraphStats(const fst::StdVectorFst &den_graph) { int32 num_states = den_graph.NumStates(); int32 degree_cutoff = 3; // track states with <= transitions in/out. int32 num_states_low_degree_in = 0, num_states_low_degree_out = 0, tot_arcs = 0; std::vector<int32> num_in_arcs(num_states, 0); for (int32 s = 0; s < num_states; s++) { if (den_graph.NumArcs(s) <= degree_cutoff) { num_states_low_degree_out++; } tot_arcs += den_graph.NumArcs(s); for (fst::ArcIterator<fst::StdVectorFst> aiter(den_graph, s); !aiter.Done(); aiter.Next()) { int32 dest_state = aiter.Value().nextstate; num_in_arcs[dest_state]++; } } for (int32 s = 0; s < num_states; s++) { if (num_in_arcs[s] <= degree_cutoff) { num_states_low_degree_in++; } } KALDI_LOG << "Number of states is " << num_states << " and arcs " << tot_arcs << "; number of states with in-degree <= " << degree_cutoff << " is " << num_states_low_degree_in << " and with out-degree <= " << degree_cutoff << " is " << num_states_low_degree_out; } // Check that every pdf is seen, warn if some are not. static void CheckDenominatorFst(int32 num_pdfs, const fst::StdVectorFst &den_fst) { std::vector<bool> pdf_seen(num_pdfs); int32 num_states = den_fst.NumStates(); for (int32 s = 0; s < num_states; s++) { for (fst::ArcIterator<fst::StdVectorFst> aiter(den_fst, s); !aiter.Done(); aiter.Next()) { int32 pdf_id = aiter.Value().ilabel - 1; KALDI_ASSERT(pdf_id >= 0 && pdf_id < num_pdfs); pdf_seen[pdf_id] = true; } } for (int32 pdf = 0; pdf < num_pdfs; pdf++) { if (!pdf_seen[pdf]) { KALDI_WARN << "Pdf-id " << pdf << " is not seen in denominator graph."; } } } void CreateDenominatorFst(const ContextDependency &ctx_dep, const TransitionModel &trans_model, const fst::StdVectorFst &phone_lm_in, fst::StdVectorFst *den_fst) { using fst::StdVectorFst; using fst::StdArc; KALDI_ASSERT(phone_lm_in.NumStates() != 0); fst::StdVectorFst phone_lm(phone_lm_in); KALDI_LOG << "Number of states and arcs in phone-LM FST is " << phone_lm.NumStates() << " and " << NumArcs(phone_lm); int32 subsequential_symbol = trans_model.GetPhones().back() + 1; if (ctx_dep.CentralPosition() != ctx_dep.ContextWidth() - 1) { // note: this function only adds the subseq symbol to the input of what was // previously an acceptor, so we project, i.e. copy the ilabels to the // olabels AddSubsequentialLoop(subsequential_symbol, &phone_lm); fst::Project(&phone_lm, fst::PROJECT_INPUT); } std::vector<int32> disambig_syms; // empty list of diambiguation symbols. // inv_cfst will be expanded on the fly, as needed. fst::InverseContextFst inv_cfst(subsequential_symbol, trans_model.GetPhones(), disambig_syms, ctx_dep.ContextWidth(), ctx_dep.CentralPosition()); fst::StdVectorFst context_dep_lm; fst::ComposeDeterministicOnDemandInverse(phone_lm, &inv_cfst, &context_dep_lm); // at this point, context_dep_lm will have indexes into 'ilabels' as its // input symbol (representing context-dependent phones), and phones on its // output. We don't need the phones, so we'll project. fst::Project(&context_dep_lm, fst::PROJECT_INPUT); KALDI_LOG << "Number of states and arcs in context-dependent LM FST is " << context_dep_lm.NumStates() << " and " << NumArcs(context_dep_lm); std::vector<int32> disambig_syms_h; // disambiguation symbols on input side // of H -- will be empty. HTransducerConfig h_config; // the default is 1, but just document that we want this to stay as one. // we'll use the same value in test time. Consistency is the key here. h_config.transition_scale = 1.0; StdVectorFst *h_fst = GetHTransducer(inv_cfst.IlabelInfo(), ctx_dep, trans_model, h_config, &disambig_syms_h); KALDI_ASSERT(disambig_syms_h.empty()); StdVectorFst transition_id_fst; TableCompose(*h_fst, context_dep_lm, &transition_id_fst); delete h_fst; BaseFloat self_loop_scale = 1.0; // We have to be careful to use the same // value in test time. // 'reorder' must always be set to true for chain models. bool reorder = true; bool check_no_self_loops = true; // add self-loops to the FST with transition-ids as its labels. AddSelfLoops(trans_model, disambig_syms_h, self_loop_scale, reorder, check_no_self_loops, &transition_id_fst); // at this point transition_id_fst will have transition-ids as its ilabels and // context-dependent phones (indexes into IlabelInfo()) as its olabels. // Discard the context-dependent phones by projecting on the input, keeping // only the transition-ids. fst::Project(&transition_id_fst, fst::PROJECT_INPUT); MapFstToPdfIdsPlusOne(trans_model, &transition_id_fst); KALDI_LOG << "Number of states and arcs in transition-id FST is " << transition_id_fst.NumStates() << " and " << NumArcs(transition_id_fst); // RemoveEpsLocal doesn't remove all epsilons, but it keeps the graph small. fst::RemoveEpsLocal(&transition_id_fst); // If there are remaining epsilons, remove them. fst::RmEpsilon(&transition_id_fst); KALDI_LOG << "Number of states and arcs in transition-id FST after " << "removing epsilons is " << transition_id_fst.NumStates() << " and " << NumArcs(transition_id_fst); DenGraphMinimizeWrapper(&transition_id_fst); SortOnTransitionCount(&transition_id_fst); *den_fst = transition_id_fst; CheckDenominatorFst(trans_model.NumPdfs(), *den_fst); PrintDenGraphStats(*den_fst); } int32 DenominatorGraph::NumStates() const { return forward_transitions_.Dim(); } } // namespace chain } // namespace kaldi |