Blame view
src/chain/chain-denominator.cc
19.9 KB
8dcb6dfcb first commit |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 |
// chain/chain-denominator.cc // Copyright 2015 Johns Hopkins University (author: Daniel Povey) // See ../../COPYING for clarification regarding multiple authors // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY // KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED // WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE, // MERCHANTABLITY OR NON-INFRINGEMENT. // See the Apache 2 License for the specific language governing permissions and // limitations under the License. #include "chain/chain-denominator.h" #include "chain/chain-kernels-ansi.h" namespace kaldi { namespace chain { DenominatorComputation::DenominatorComputation( const ChainTrainingOptions &opts, const DenominatorGraph &den_graph, int32 num_sequences, const CuMatrixBase<BaseFloat> &nnet_output): opts_(opts), den_graph_(den_graph), num_sequences_(num_sequences), frames_per_sequence_(nnet_output.NumRows() / num_sequences_), nnet_output_deriv_transposed_( nnet_output.NumCols(), std::min<int32>(nnet_output.NumRows(), static_cast<int32>(kMaxDerivTimeSteps) * num_sequences_)), alpha_(frames_per_sequence_ + 1, den_graph_.NumStates() * num_sequences_ + num_sequences_, kUndefined), beta_(2, den_graph_.NumStates() * num_sequences_ + num_sequences_, kUndefined), tot_prob_(num_sequences_, kUndefined), tot_log_prob_(num_sequences_, kUndefined), log_correction_term_(num_sequences_, kUndefined), ok_(true) { // We don't let leaky_hmm_coefficient be exactly zero (although that would // make sense mathematically, corresponding to "turning off" the leaky HMM), // because that would lead to underflow and eventually NaN's or inf's // appearing in the computation, since we do this computation not in // log-space. KALDI_ASSERT(opts_.leaky_hmm_coefficient > 0.0 && opts_.leaky_hmm_coefficient < 1.0); if (RandInt(0, 99) == 0) { // A check, that all values in nnet_output are in the range [-30, 30].. // otherwise derivatives will be wrong (search below for 30). BaseFloat max_val = nnet_output.Max(), min_val = nnet_output.Min(); if (max_val > 30.0 || min_val < -30.0) { KALDI_WARN << "Nnet outputs " << min_val << ", " << max_val << " outside the range [-30,30], derivs may be inaccurate."; } } // make sure the alpha sums and beta sums are zeroed. alpha_.ColRange(den_graph_.NumStates() * num_sequences_, num_sequences_).SetZero(); beta_.ColRange(den_graph_.NumStates() * num_sequences_, num_sequences_).SetZero(); KALDI_ASSERT(nnet_output.NumRows() % num_sequences == 0); // the kStrideEqualNumCols argument is so that we can share the same // memory block with xent_output_deriv (see chain-training.cc, search for // kStrideEqualNumCols). This depends on how the allocator works, and // actually might not happen, but anyway, the impact on speed would // likely be un-measurably small. exp_nnet_output_transposed_.Resize(nnet_output.NumCols(), nnet_output.NumRows(), kUndefined, kStrideEqualNumCols); exp_nnet_output_transposed_.CopyFromMat(nnet_output, kTrans); // We limit the nnet output to the range [-30,30] before doing the exp; // this avoids NaNs appearing in the forward-backward computation, which // is not done in log space. exp_nnet_output_transposed_.ApplyExpLimited(-30.0, 30.0); } void DenominatorComputation::AlphaFirstFrame() { // dim == num_hmm_states_ * num_sequences_. BaseFloat *first_frame_alpha = alpha_.RowData(0); // create a 'fake matrix' - view this row as a matrix. // initializer takes [pointer, num-rows, num-cols, stride]. CuSubMatrix<BaseFloat> alpha_mat(first_frame_alpha, den_graph_.NumStates(), num_sequences_, num_sequences_); // TODO (possible): It would be more efficient here if we implemented a // CopyColsFromVec function in class CuMatrix. alpha_mat.SetZero(); alpha_mat.AddVecToCols(1.0, den_graph_.InitialProbs(), 0.0); } // the alpha computation for some 0 < t <= num_time_steps_. void DenominatorComputation::AlphaGeneralFrame(int32 t) { KALDI_ASSERT(t > 0 && t <= frames_per_sequence_); BaseFloat *this_alpha = alpha_.RowData(t); const BaseFloat *prev_alpha_dash = alpha_.RowData(t - 1); const Int32Pair *backward_transitions = den_graph_.BackwardTransitions(); const DenominatorGraphTransition *transitions = den_graph_.Transitions(); int32 num_pdfs = exp_nnet_output_transposed_.NumRows(), num_hmm_states = den_graph_.NumStates(), num_sequences = num_sequences_; // 'probs' is the matrix of pseudo-likelihoods for frame t - 1. CuSubMatrix<BaseFloat> probs(exp_nnet_output_transposed_, 0, num_pdfs, (t-1) * num_sequences_, num_sequences_); const BaseFloat *prob_data = probs.Data(); #if HAVE_CUDA == 1 if (CuDevice::Instantiate().Enabled()) { CuTimer tim; dim3 dimBlock(std::min<int32>(CU1DBLOCK, num_sequences), 1, 1); dim3 dimGrid(n_blocks(num_sequences, dimBlock.x), num_hmm_states, 1); while (1) { if (dimGrid.y > 65535) // the hardware doesn't allow more than this. dimGrid.y = 65535; cuda_chain_hmm_forward(dimGrid, dimBlock, backward_transitions, transitions, num_sequences, den_graph_.NumStates(), prob_data, probs.Stride(), prev_alpha_dash, this_alpha); CU_SAFE_CALL(cudaGetLastError()); if (dimGrid.y == num_hmm_states) { break; // this is the normal case. } else { // We reach this code only in the unusual case where num_hmm_states > // 65535. We can compute the alphas for the remaining HMM states by // moving some of the array pointers and making the call again. backward_transitions += dimGrid.y; this_alpha += dimGrid.y * num_sequences; num_hmm_states -= dimGrid.y; dimGrid.y = num_hmm_states; } } CuDevice::Instantiate().AccuProfile(__func__, tim); } else #endif { int32 prob_stride = probs.Stride(); for (int32 h = 0; h < num_hmm_states; h++) { for (int32 s = 0; s < num_sequences; s++) { double this_tot_alpha = 0.0; const DenominatorGraphTransition *trans_iter = transitions + backward_transitions[h].first, *trans_end = transitions + backward_transitions[h].second; for (; trans_iter != trans_end; ++trans_iter) { BaseFloat transition_prob = trans_iter->transition_prob; int32 pdf_id = trans_iter->pdf_id, prev_hmm_state = trans_iter->hmm_state; BaseFloat prob = prob_data[pdf_id * prob_stride + s], this_prev_alpha = prev_alpha_dash[prev_hmm_state * num_sequences + s]; this_tot_alpha += this_prev_alpha * transition_prob * prob; } // Let arbitrary_scale be the inverse of the alpha-sum value that we // store in the same place we'd store the alpha for the state numbered // 'num_hmm_states'. We multiply this into all the // transition-probabilities from the previous frame to this frame, in // both the forward and backward passes, in order to keep the alphas in // a good numeric range. This won't affect the posteriors, but when // computing the total likelihood we'll need to compensate for it later // on. BaseFloat arbitrary_scale = 1.0 / prev_alpha_dash[num_hmm_states * num_sequences + s]; KALDI_ASSERT(this_tot_alpha - this_tot_alpha == 0); this_alpha[h * num_sequences + s] = this_tot_alpha * arbitrary_scale; } } } } void DenominatorComputation::AlphaDash(int32 t) { BaseFloat *this_alpha = alpha_.RowData(t); // create a 'fake matrix' for the regular alphas- view this row as a matrix. // initializer takes [pointer, num-rows, num-cols, stride]. CuSubMatrix<BaseFloat> alpha_mat(this_alpha, den_graph_.NumStates(), num_sequences_, num_sequences_); // the alpha-dash is the sum of alpha over all states. CuSubVector<BaseFloat> alpha_sum_vec(this_alpha + den_graph_.NumStates() * num_sequences_, num_sequences_); alpha_sum_vec.AddRowSumMat(1.0, alpha_mat, 0.0); alpha_mat.AddVecVec(opts_.leaky_hmm_coefficient, den_graph_.InitialProbs(), alpha_sum_vec); // it's now alpha-dash. } // compute beta from beta-dash. void DenominatorComputation::Beta(int32 t) { BaseFloat *this_beta_dash = beta_.RowData(t % 2); // create a 'fake matrix' for the regular beta-dash (which is // the counterpart of alpha-dash)- view this row as a matrix. // initializer takes [pointer, num-rows, num-cols, stride]. CuSubMatrix<BaseFloat> beta_dash_mat(this_beta_dash, den_graph_.NumStates(), num_sequences_, num_sequences_); // making the t index implicit, the beta-dash-sum for each sequence is the sum // over all states i of beta_i * opts_.leaky_hmm_coefficient * initial_prob_i. CuSubVector<BaseFloat> beta_dash_sum_vec( this_beta_dash + den_graph_.NumStates() * num_sequences_, num_sequences_); beta_dash_sum_vec.AddMatVec(opts_.leaky_hmm_coefficient, beta_dash_mat, kTrans, den_graph_.InitialProbs(), 0.0); // we are computing beta in place. After the following, beta-dash-mat // will contain the actual beta (i.e. the counterpart of alpha), // not the beta-dash. beta_dash_mat.AddVecToRows(1.0, beta_dash_sum_vec); } BaseFloat DenominatorComputation::Forward() { AlphaFirstFrame(); AlphaDash(0); for (int32 t = 1; t <= frames_per_sequence_; t++) { AlphaGeneralFrame(t); AlphaDash(t); } return ComputeTotLogLike(); } BaseFloat DenominatorComputation::ComputeTotLogLike() { tot_prob_.Resize(num_sequences_); // View the last alpha-dash as a matrix of size num-hmm-states by num-sequences. CuSubMatrix<BaseFloat> last_alpha_dash( alpha_.RowData(frames_per_sequence_), den_graph_.NumStates(), num_sequences_, num_sequences_); tot_prob_.AddRowSumMat(1.0, last_alpha_dash, 0.0); // we should probably add an ApplyLog() function that takes a vector argument. tot_log_prob_ = tot_prob_; tot_log_prob_.ApplyLog(); BaseFloat tot_log_prob = tot_log_prob_.Sum(); // We now have to add something for the arbitrary scaling factor. [note: the // purpose of the arbitrary scaling factors was to keep things in a good // floating-point range] // The inverses of all the tot-alpha quantities, for t = 0 // ... frames_per_sequence_ - 1, were included as the 'arbitrary factors' in // the transition-probs, so we need to multiply them all together (not // inversed) and add them as a correction term to the total log-likes. // These tot-alpha quantities were stored in the same place that we would // have stored the HMM-state numbered 'num_hmm_states'. int32 num_hmm_states = den_graph_.NumStates(); CuSubMatrix<BaseFloat> inv_arbitrary_scales( alpha_, 0, frames_per_sequence_, num_sequences_ * num_hmm_states, num_sequences_); CuMatrix<BaseFloat> log_inv_arbitrary_scales( inv_arbitrary_scales); log_inv_arbitrary_scales.ApplyLog(); BaseFloat log_inv_arbitrary_scales_product = log_inv_arbitrary_scales.Sum(); return tot_log_prob + log_inv_arbitrary_scales_product; } bool DenominatorComputation::Backward( BaseFloat deriv_weight, CuMatrixBase<BaseFloat> *nnet_output_deriv) { BetaDashLastFrame(); Beta(frames_per_sequence_); for (int32 t = frames_per_sequence_ - 1; t >= 0; t--) { BetaDashGeneralFrame(t); if (GetVerboseLevel() >= 1 || t == 0) BetaGeneralFrameDebug(t); Beta(t); if (t % kMaxDerivTimeSteps == 0) { // commit the derivative stored in nnet_output_deriv_transposed_ by adding // its transpose to the appropriate sub-matrix of 'nnet_output_deriv'. int32 chunk_frames = std::min<int32>(static_cast<int32>(kMaxDerivTimeSteps), frames_per_sequence_ - t), num_pdfs = exp_nnet_output_transposed_.NumRows(); CuSubMatrix<BaseFloat> transposed_deriv_part( nnet_output_deriv_transposed_, 0, num_pdfs, 0, chunk_frames * num_sequences_); CuSubMatrix<BaseFloat> output_deriv_part( *nnet_output_deriv, t * num_sequences_, chunk_frames * num_sequences_, 0, num_pdfs); output_deriv_part.AddMat(deriv_weight, transposed_deriv_part, kTrans); if (t != 0) transposed_deriv_part.SetZero(); } } return ok_; } void DenominatorComputation::BetaDashLastFrame() { // sets up the beta-dash quantity on the last frame (frame == // frames_per_sequence_). Note that the betas we use here contain a // 1/(tot-prob) factor in order to simplify the backprop. int32 t = frames_per_sequence_; BaseFloat *last_frame_beta_dash = beta_.RowData(t % 2); // create a 'fake matrix' - view this row as a matrix. CuSubMatrix<BaseFloat> beta_dash_mat(last_frame_beta_dash, den_graph_.NumStates(), num_sequences_, num_sequences_); CuVector<BaseFloat> inv_tot_prob(tot_prob_); inv_tot_prob.InvertElements(); // the beta values at the end of the file only vary with the sequence-index, // not with the HMM-index. We treat all states as having a final-prob of one. beta_dash_mat.CopyRowsFromVec(inv_tot_prob); } void DenominatorComputation::BetaDashGeneralFrame(int32 t) { KALDI_ASSERT(t >= 0 && t < frames_per_sequence_); int32 num_pdfs = exp_nnet_output_transposed_.NumRows(); // t_wrapped gives us the time-index we use when indexing // nnet_output_deriv_transposed_; to save memory we limit the size of the // matrix, storing only chunks of frames at a time, and we add it to the // non-transposed output whenever we finish a chunk. int32 t_wrapped = t % static_cast<int32>(kMaxDerivTimeSteps); const BaseFloat *this_alpha_dash = alpha_.RowData(t), *next_beta = beta_.RowData((t + 1) % 2); BaseFloat *this_beta_dash = beta_.RowData(t % 2); const Int32Pair *forward_transitions = den_graph_.ForwardTransitions(); const DenominatorGraphTransition *transitions = den_graph_.Transitions(); // 'probs' is the matrix of pseudo-likelihoods for frame t. CuSubMatrix<BaseFloat> probs(exp_nnet_output_transposed_, 0, num_pdfs, t * num_sequences_, num_sequences_), log_prob_deriv(nnet_output_deriv_transposed_, 0, num_pdfs, t_wrapped * num_sequences_, num_sequences_); int32 num_hmm_states = den_graph_.NumStates(), num_sequences = num_sequences_; #if HAVE_CUDA == 1 if (CuDevice::Instantiate().Enabled()) { CuTimer tim; dim3 dimBlock(std::min<int32>(CU1DBLOCK, num_sequences), 1, 1); dim3 dimGrid(n_blocks(num_sequences, dimBlock.x), num_hmm_states, 1); while (1) { if (dimGrid.y > 65535) // the hardware doesn't allow more than this. dimGrid.y = 65535; cuda_chain_hmm_backward(dimGrid, dimBlock, forward_transitions, transitions, num_sequences, num_hmm_states, probs.Data(), probs.Stride(), this_alpha_dash, next_beta, this_beta_dash, log_prob_deriv.Data(), log_prob_deriv.Stride()); CU_SAFE_CALL(cudaGetLastError()); if (dimGrid.y == num_hmm_states) { break; // this is the normal case. } else { // We reach this code only in the unusual case where num_hmm_states > // 65535. We can compute the betas (and log-prob derivatives) for the // remaining HMM states by moving some of the array pointers and making // the call again. forward_transitions += dimGrid.y; this_alpha_dash += dimGrid.y * num_sequences; this_beta_dash += dimGrid.y * num_sequences; num_hmm_states -= dimGrid.y; dimGrid.y = num_hmm_states; } } CuDevice::Instantiate().AccuProfile(__func__, tim); } else #endif { int32 prob_stride = probs.Stride(), deriv_stride = log_prob_deriv.Stride(); const BaseFloat *prob_data = probs.Data(); BaseFloat *log_prob_deriv_data = log_prob_deriv.Data(); for (int32 h = 0; h < num_hmm_states; h++) { for (int32 s = 0; s < num_sequences; s++) { BaseFloat this_alpha_dash_prob = this_alpha_dash[h * num_sequences + s], inv_arbitrary_scale = this_alpha_dash[num_hmm_states * num_sequences + s]; double tot_variable_factor = 0.0; BaseFloat occupation_factor = this_alpha_dash_prob / inv_arbitrary_scale; const DenominatorGraphTransition *trans_iter = transitions + forward_transitions[h].first, *trans_end = transitions + forward_transitions[h].second; for (; trans_iter != trans_end; ++trans_iter) { BaseFloat transition_prob = trans_iter->transition_prob; int32 pdf_id = trans_iter->pdf_id, next_hmm_state = trans_iter->hmm_state; BaseFloat variable_factor = transition_prob * next_beta[next_hmm_state * num_sequences + s] * prob_data[pdf_id * prob_stride + s]; tot_variable_factor += variable_factor; BaseFloat occupation_prob = variable_factor * occupation_factor; log_prob_deriv_data[pdf_id * deriv_stride + s] += occupation_prob; } this_beta_dash[h * num_sequences + s] = tot_variable_factor / inv_arbitrary_scale; } } } } void DenominatorComputation::BetaGeneralFrameDebug(int32 t) { BaseFloat num_hmm_states = den_graph_.NumStates(), alpha_beta_size = num_hmm_states * num_sequences_; CuSubVector<BaseFloat> this_alpha_dash(alpha_.RowData(t), alpha_beta_size), this_beta_dash(beta_.RowData(t % 2), alpha_beta_size); int32 t_wrapped = t % static_cast<int32>(kMaxDerivTimeSteps), num_pdfs = exp_nnet_output_transposed_.NumRows(); CuSubMatrix<BaseFloat> this_log_prob_deriv( nnet_output_deriv_transposed_, 0, num_pdfs, t_wrapped * num_sequences_, num_sequences_); BaseFloat alpha_beta_product = VecVec(this_alpha_dash, this_beta_dash), this_log_prob_deriv_sum = this_log_prob_deriv.Sum(); if (!ApproxEqual(alpha_beta_product, num_sequences_)) { KALDI_WARN << "On time " << t << ", alpha-beta product " << alpha_beta_product << " != " << num_sequences_ << " alpha-dash-sum = " << this_alpha_dash.Sum() << ", beta-dash-sum = " << this_beta_dash.Sum(); if (fabs(alpha_beta_product - num_sequences_) > 2.0) { KALDI_WARN << "Excessive error detected, will abandon this minibatch"; ok_ = false; } } // use higher tolerance, since we are using randomized pruning for the // log-prob derivatives. if (!ApproxEqual(this_log_prob_deriv_sum, num_sequences_, 0.01)) { KALDI_WARN << "On time " << t << ", log-prob-deriv sum " << this_log_prob_deriv_sum << " != " << num_sequences_; if (fabs(this_log_prob_deriv_sum - num_sequences_) > 2.0) { KALDI_WARN << "Excessive error detected, will abandon this minibatch"; ok_ = false; } } } } // namespace chain } // namespace kaldi |