Blame view

src/chain/chain-generic-numerator.cc 15.5 KB
8dcb6dfcb   Yannick Estève   first commit
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
  // chain/chain-generic-numerator.cc
  
  // Copyright      2017   Hossein Hadian
  
  // See ../../COPYING for clarification regarding multiple authors
  //
  // Licensed under the Apache License, Version 2.0 (the "License");
  // you may not use this file except in compliance with the License.
  // You may obtain a copy of the License at
  //
  //  http://www.apache.org/licenses/LICENSE-2.0
  //
  // THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
  // KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED
  // WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE,
  // MERCHANTABLITY OR NON-INFRINGEMENT.
  // See the Apache 2 License for the specific language governing permissions and
  // limitations under the License.
  
  
  #include "chain/chain-generic-numerator.h"
  #include "chain/chain-kernels-ansi.h"
  
  #include <iterator>
  #include <limits>
  #include <algorithm>
  
  namespace kaldi {
  namespace chain {
  
  // GenericNumeratorComputation is responsible for the forward-backward of the
  // end-to-end 'supervision' (numerator) FST. It is used in chain-training.cc
  // (similar to NumeratorComputation) to compute the numerator derivatives
  // for end-to-end training 'supervision's.
  
  GenericNumeratorComputation::GenericNumeratorComputation(
      const Supervision &supervision,
      const CuMatrixBase<BaseFloat> &nnet_output):
      supervision_(supervision),
      nnet_output_(nnet_output) {
    KALDI_ASSERT(supervision.num_sequences *
                 supervision.frames_per_sequence == nnet_output.NumRows() &&
                 supervision.label_dim == nnet_output.NumCols());
  
    using std::vector;
    int num_sequences = supervision_.num_sequences;
    KALDI_ASSERT(supervision_.e2e_fsts.size() == num_sequences);
  
    // Find the maximum number of HMM states and then
    // initialize final probs, alpha, and beta.
    int max_num_hmm_states = 0;
    for (int i = 0; i < num_sequences; i++) {
      KALDI_ASSERT(supervision_.e2e_fsts[i].Properties(fst::kIEpsilons, true)
                   == 0);
      if (supervision_.e2e_fsts[i].NumStates() > max_num_hmm_states)
        max_num_hmm_states = supervision_.e2e_fsts[i].NumStates();
    }
    final_probs_.Resize(num_sequences, max_num_hmm_states);
  
    // Initialize incoming transitions for easy access
    in_transitions_.resize(num_sequences);  // indexed by seq, state
    out_transitions_.resize(num_sequences);  // indexed by seq, state
    for (int seq = 0; seq < num_sequences; seq++) {
      in_transitions_[seq] = vector<vector<DenominatorGraphTransition> >(
          supervision_.e2e_fsts[seq].NumStates());
      out_transitions_[seq] = vector<vector<DenominatorGraphTransition> >(
          supervision_.e2e_fsts[seq].NumStates());
    }
  
    offsets_.Resize(num_sequences);
    std::unordered_map<int32, MatrixIndexT> pdf_to_index;
    int32 pdf_stride = nnet_output_.Stride();
    int32 view_stride = nnet_output_.Stride() * num_sequences;
    pdf_to_index.reserve(view_stride);
    nnet_output_stride_ = pdf_stride;
    for (int seq = 0; seq < num_sequences; seq++) {
      for (int32 s = 0; s < supervision_.e2e_fsts[seq].NumStates(); s++) {
        final_probs_(seq, s)= -supervision_.e2e_fsts[seq].Final(s).Value();
        BaseFloat offset = 0.0;
        if (s == 0) {
          for (fst::ArcIterator<fst::StdVectorFst> aiter(
                   supervision_.e2e_fsts[seq], s);
               !aiter.Done();
               aiter.Next())
            if (aiter.Value().weight.Value() > offset)
              offset = aiter.Value().weight.Value();
          offsets_(seq) = offset;
        }
  
        for (fst::ArcIterator<fst::StdVectorFst> aiter(
               supervision_.e2e_fsts[seq], s);
             !aiter.Done();
             aiter.Next()) {
          const fst::StdArc &arc = aiter.Value();
          DenominatorGraphTransition transition;
          transition.transition_prob = -(arc.weight.Value() - offset);
  
          int32 pdf_id = arc.ilabel - 1;  // note: the FST labels were pdf-id plus one.
  
          // remap  to a unique index in the remapped space
          pdf_id = pdf_id + seq * pdf_stride;
          KALDI_ASSERT(pdf_id < view_stride);
  
          if (pdf_to_index.find(pdf_id) == pdf_to_index.end()) {
            index_to_pdf_.push_back(pdf_id);
            pdf_to_index[pdf_id] = index_to_pdf_.size() - 1;
          }
  
          transition.pdf_id = pdf_to_index[pdf_id];
          transition.hmm_state = s;
          in_transitions_[seq][arc.nextstate].push_back(transition);
          transition.hmm_state = arc.nextstate;
          out_transitions_[seq][s].push_back(transition);
        }
      }
    }
  }
  
  
  void GenericNumeratorComputation::AlphaFirstFrame(int seq,
                                                    Matrix<BaseFloat> *alpha) {
    const int32 num_frames = supervision_.frames_per_sequence,
                num_states = supervision_.e2e_fsts[seq].NumStates();
    alpha->Resize(num_frames + 1,  num_states + 1, kSetZero);
    alpha->Set(-std::numeric_limits<BaseFloat>::infinity());
    (*alpha)(0, 0) = 0.0;
    (*alpha)(0, num_states) = 0.0;
  }
  
  
  void GenericNumeratorComputation::CopySpecificPdfsIndirect(
                                      const CuMatrixBase<BaseFloat> &nnet_output,
                                      const std::vector<MatrixIndexT> &indices,
                                      Matrix<BaseFloat> *out) {
    KALDI_ASSERT(nnet_output_stride_ == nnet_output_.Stride());
    const int32 num_sequences = supervision_.num_sequences,
                frames_per_sequence = supervision_.frames_per_sequence;
  
    const BaseFloat *starting_ptr = nnet_output.RowData(0);
    const int view_stride = num_sequences * nnet_output.Stride();
  
    const CuSubMatrix<BaseFloat> sequence_view(starting_ptr,
                                               frames_per_sequence,
                                               view_stride,
                                               view_stride);
  
    CuArray<MatrixIndexT> indices_gpu(indices);
    CuMatrix<BaseFloat> required_pdfs(frames_per_sequence,
                                          indices.size());
  
    required_pdfs.CopyCols(sequence_view, indices_gpu);
    out->Swap(&required_pdfs);
  }
  
  // The alpha computation for some 0 < t <= num_time_steps_.
  BaseFloat GenericNumeratorComputation::AlphaRemainingFrames(int seq,
                                                const Matrix<BaseFloat> &probs,
                                                Matrix<BaseFloat> *alpha) {
    // Define some variables to make things nicer
    const int32 num_sequences = supervision_.num_sequences,
                num_frames = supervision_.frames_per_sequence;
  
    KALDI_ASSERT(seq >= 0 && seq < num_sequences);
  
    // variables for log_likelihood computation
    double log_scale_product = 0,
           log_prob_product = 0;
  
    for (int t = 1; t <= num_frames; ++t) {
      const BaseFloat *probs_tm1 = probs.RowData(t - 1);
      BaseFloat *alpha_t = alpha->RowData(t);
      const BaseFloat *alpha_tm1 = alpha->RowData(t - 1);
  
      for (int32 h = 0; h < supervision_.e2e_fsts[seq].NumStates(); h++) {
        for (auto tr = in_transitions_[seq][h].begin();
            tr != in_transitions_[seq][h].end(); ++tr) {
          BaseFloat transition_prob = tr->transition_prob;
          int32 pdf_id = tr->pdf_id,
                prev_hmm_state = tr->hmm_state;
          BaseFloat prob = probs_tm1[pdf_id];
          alpha_t[h] = LogAdd(alpha_t[h],
              alpha_tm1[prev_hmm_state] + transition_prob + prob);
        }
      }
      double sum = alpha_tm1[alpha->NumCols() - 1];
      SubMatrix<BaseFloat> alpha_t_mat(*alpha, t, 1, 0,
                                        alpha->NumCols() - 1);
      alpha_t_mat.Add(-sum);
      sum = alpha_t_mat.LogSumExp();
  
      alpha_t[alpha->NumCols() - 1] = sum;
      log_scale_product += sum;
    }
    SubMatrix<BaseFloat> last_alpha(*alpha, alpha->NumRows() - 1, 1,
                                    0, alpha->NumCols() - 1);
    SubVector<BaseFloat> final_probs(final_probs_.RowData(seq),
                                     alpha->NumCols() - 1);
  
    // adjust last_alpha
    double sum = (*alpha)(alpha->NumRows() - 1, alpha->NumCols() - 1);
    log_scale_product -= sum;
    last_alpha.AddVecToRows(1.0, final_probs);
    sum = last_alpha.LogSumExp();
    (*alpha)(alpha->NumRows() - 1, alpha->NumCols() - 1) = sum;
  
    // second part of criterion
    log_prob_product = sum - offsets_(seq);
  
    return log_prob_product + log_scale_product;
  }
  
  bool GenericNumeratorComputation::ForwardBackward(
                                   BaseFloat *total_loglike,
                                   CuMatrixBase<BaseFloat> *nnet_output_deriv) {
    KALDI_ASSERT(total_loglike != NULL);
    KALDI_ASSERT(nnet_output_deriv != NULL);
    KALDI_ASSERT(nnet_output_deriv->NumCols() == nnet_output_.NumCols());
    KALDI_ASSERT(nnet_output_deriv->NumRows() == nnet_output_.NumRows());
  
    BaseFloat partial_loglike = 0;
    const int32 num_sequences = supervision_.num_sequences;
  
    bool ok = true;
    Matrix<BaseFloat> alpha;
    Matrix<BaseFloat> beta;
    Matrix<BaseFloat> probs;
    Matrix<BaseFloat> derivs;
  
    // We selectively copy only those pdfs we need
    CopySpecificPdfsIndirect(nnet_output_, index_to_pdf_, &probs);
  
    derivs.Resize(probs.NumRows(), probs.NumCols());
    derivs.Set(-std::numeric_limits<BaseFloat>::infinity());
  
    for (int seq = 0; seq < num_sequences; ++seq) {
      // Forward part
      AlphaFirstFrame(seq, &alpha);
      partial_loglike += AlphaRemainingFrames(seq, probs, &alpha);
  
      // Backward part
      BetaLastFrame(seq, alpha, &beta);
      BetaRemainingFrames(seq, probs, alpha, &beta, &derivs);
      if (GetVerboseLevel() >= 1)
        ok = ok && CheckValues(seq, probs, alpha, beta, derivs);
    }
    // Transfer and add the derivatives to the values in the matrix
    AddSpecificPdfsIndirect(&derivs, index_to_pdf_, nnet_output_deriv);
    *total_loglike = partial_loglike;
    return ok;
  }
  
  BaseFloat GenericNumeratorComputation::ComputeObjf() {
    BaseFloat partial_loglike = 0;
    const int32 num_sequences = supervision_.num_sequences;
  
    Matrix<BaseFloat> alpha;
    Matrix<BaseFloat> probs;
  
    // We selectively copy only those pdfs we need
    CopySpecificPdfsIndirect(nnet_output_, index_to_pdf_, &probs);
  
    for (int seq = 0; seq < num_sequences; ++seq) {
      // Forward part
      AlphaFirstFrame(seq, &alpha);
      partial_loglike += AlphaRemainingFrames(seq, probs, &alpha);
    }
    return partial_loglike;
  }
  
  BaseFloat GenericNumeratorComputation::GetTotalProb(
                                            const Matrix<BaseFloat> &alpha) {
    return alpha(alpha.NumRows() - 1, alpha.NumCols() - 1);
  }
  
  void GenericNumeratorComputation::BetaLastFrame(int seq,
                                                  const Matrix<BaseFloat> &alpha,
                                                  Matrix<BaseFloat> *beta) {
    // Sets up the beta quantity on the last frame (frame ==
    // frames_per_sequence_).  Note that the betas we use here contain a
    // 1/(tot-prob) factor in order to simplify the backprop.
    const int32 num_frames = supervision_.frames_per_sequence,
                num_states = supervision_.e2e_fsts[seq].NumStates();
    float tot_prob = GetTotalProb(alpha);
  
    beta->Resize(2, num_states);
    beta->Set(-std::numeric_limits<BaseFloat>::infinity());
  
    SubVector<BaseFloat> beta_mat(beta->RowData(num_frames % 2), num_states);
    SubVector<BaseFloat> final_probs(final_probs_.RowData(seq), num_states);
  
    BaseFloat inv_tot_prob = -tot_prob;
    beta_mat.Set(inv_tot_prob);
    beta_mat.AddVec(1.0, final_probs);
  }
  
  void GenericNumeratorComputation::BetaRemainingFrames(int seq,
                                                  const Matrix<BaseFloat> &probs,
                                                  const Matrix<BaseFloat> &alpha,
                                                  Matrix<BaseFloat> *beta,
                                                  Matrix<BaseFloat> *derivs) {
    const int32
        num_sequences = supervision_.num_sequences,
        num_frames = supervision_.frames_per_sequence,
        num_states = supervision_.e2e_fsts[seq].NumStates();
    KALDI_ASSERT(seq >= 0 && seq < num_sequences);
  
    for (int t = num_frames - 1; t >= 0; --t) {
      const BaseFloat *alpha_t = alpha.RowData(t),
          *beta_tp1 = beta->RowData((t + 1) % 2),
          *probs_t = probs.RowData(t);
      BaseFloat *log_prob_deriv_t = derivs->RowData(t),
          *beta_t = beta->RowData(t % 2);
  
      BaseFloat inv_arbitrary_scale = alpha_t[num_states];
      for (int32 h = 0; h < supervision_.e2e_fsts[seq].NumStates(); h++) {
        BaseFloat tot_variable_factor;
        tot_variable_factor = -std::numeric_limits<BaseFloat>::infinity();
        for (auto tr = out_transitions_[seq][h].begin();
                 tr != out_transitions_[seq][h].end(); ++tr) {
          BaseFloat transition_prob = tr->transition_prob;
          int32 pdf_id = tr->pdf_id,
              next_hmm_state = tr->hmm_state;
          BaseFloat variable_factor = transition_prob +
              beta_tp1[next_hmm_state] +
              probs_t[pdf_id] - inv_arbitrary_scale;
          tot_variable_factor = LogAdd(tot_variable_factor,
                                       variable_factor);
  
          BaseFloat occupation_prob = variable_factor + alpha_t[h];
          log_prob_deriv_t[pdf_id] = LogAdd(log_prob_deriv_t[pdf_id],
                                             occupation_prob);
        }
        beta_t[h] = tot_variable_factor;
      }
    }
  }
  
  
  void GenericNumeratorComputation::AddSpecificPdfsIndirect(
                                   Matrix<BaseFloat> *logprobs,
                                   const std::vector<MatrixIndexT> &indices,
                                   CuMatrixBase<BaseFloat> *output) {
    const int32 num_sequences = supervision_.num_sequences,
                frames_per_sequence = supervision_.frames_per_sequence;
  
    const int view_stride = output->Stride() * num_sequences;
  
    KALDI_ASSERT(frames_per_sequence * num_sequences == output->NumRows());
  
    CuMatrix<BaseFloat> specific_pdfs;
    specific_pdfs.Swap(logprobs);
    specific_pdfs.ApplyExp();
    specific_pdfs.Scale(supervision_.weight);
  
    std::vector<MatrixIndexT> indices_expanded(view_stride, -1);
    for (int i = 0; i < indices.size(); ++i) {
      int pdf_index = indices[i];
      int sequence_local_pdf_index = pdf_index % nnet_output_stride_;
      int sequence_index = pdf_index / nnet_output_stride_;
      pdf_index = sequence_local_pdf_index
                  + sequence_index * output->Stride();
      KALDI_ASSERT(pdf_index < view_stride);
      KALDI_ASSERT(i < specific_pdfs.NumCols());
      indices_expanded[pdf_index] = i;
    }
  
    CuArray<MatrixIndexT> cu_indices(indices_expanded);
    CuSubMatrix<BaseFloat> out(output->Data(), frames_per_sequence,
                               view_stride, view_stride);
  
    out.AddCols(specific_pdfs, cu_indices);
  }
  
  bool GenericNumeratorComputation::CheckValues(int seq,
                                              const Matrix<BaseFloat> &probs,
                                              const Matrix<BaseFloat> &alpha,
                                              const Matrix<BaseFloat> &beta,
                                              const Matrix<BaseFloat> &derivs) const {
    const int32 num_frames = supervision_.frames_per_sequence;
    // only check the derivs for the first and last frames
    const std::vector<int32> times = {0, num_frames - 1};
    for (const int32 t: times) {
      BaseFloat deriv_sum = 0.0;
      for (int32 n = 0; n < probs.NumCols(); n++) {
        int32 pdf_stride = nnet_output_.Stride();
        int32 pdf2seq = index_to_pdf_[n] / pdf_stride;
        if (pdf2seq != seq)  // this pdf is not in the space of this sequence
          continue;
        deriv_sum += Exp(derivs(t, n));
      }
  
      if (!ApproxEqual(deriv_sum, 1.0)) {
        KALDI_WARN << "On time " << t
                   << " for seq " << seq << ", deriv sum "
                   << deriv_sum << " != 1.0";
        if (fabs(deriv_sum - 1.0) > 0.05 || deriv_sum - deriv_sum != 0) {
          KALDI_WARN << "Excessive error detected, will abandon this minibatch";
          return false;
        }
      }
    }
    return true;
  }
  
  }  // namespace chain
  }  // namespace kaldi