Blame view
src/chain/chain-generic-numerator.cc
15.5 KB
8dcb6dfcb first commit |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 |
// chain/chain-generic-numerator.cc // Copyright 2017 Hossein Hadian // See ../../COPYING for clarification regarding multiple authors // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY // KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED // WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE, // MERCHANTABLITY OR NON-INFRINGEMENT. // See the Apache 2 License for the specific language governing permissions and // limitations under the License. #include "chain/chain-generic-numerator.h" #include "chain/chain-kernels-ansi.h" #include <iterator> #include <limits> #include <algorithm> namespace kaldi { namespace chain { // GenericNumeratorComputation is responsible for the forward-backward of the // end-to-end 'supervision' (numerator) FST. It is used in chain-training.cc // (similar to NumeratorComputation) to compute the numerator derivatives // for end-to-end training 'supervision's. GenericNumeratorComputation::GenericNumeratorComputation( const Supervision &supervision, const CuMatrixBase<BaseFloat> &nnet_output): supervision_(supervision), nnet_output_(nnet_output) { KALDI_ASSERT(supervision.num_sequences * supervision.frames_per_sequence == nnet_output.NumRows() && supervision.label_dim == nnet_output.NumCols()); using std::vector; int num_sequences = supervision_.num_sequences; KALDI_ASSERT(supervision_.e2e_fsts.size() == num_sequences); // Find the maximum number of HMM states and then // initialize final probs, alpha, and beta. int max_num_hmm_states = 0; for (int i = 0; i < num_sequences; i++) { KALDI_ASSERT(supervision_.e2e_fsts[i].Properties(fst::kIEpsilons, true) == 0); if (supervision_.e2e_fsts[i].NumStates() > max_num_hmm_states) max_num_hmm_states = supervision_.e2e_fsts[i].NumStates(); } final_probs_.Resize(num_sequences, max_num_hmm_states); // Initialize incoming transitions for easy access in_transitions_.resize(num_sequences); // indexed by seq, state out_transitions_.resize(num_sequences); // indexed by seq, state for (int seq = 0; seq < num_sequences; seq++) { in_transitions_[seq] = vector<vector<DenominatorGraphTransition> >( supervision_.e2e_fsts[seq].NumStates()); out_transitions_[seq] = vector<vector<DenominatorGraphTransition> >( supervision_.e2e_fsts[seq].NumStates()); } offsets_.Resize(num_sequences); std::unordered_map<int32, MatrixIndexT> pdf_to_index; int32 pdf_stride = nnet_output_.Stride(); int32 view_stride = nnet_output_.Stride() * num_sequences; pdf_to_index.reserve(view_stride); nnet_output_stride_ = pdf_stride; for (int seq = 0; seq < num_sequences; seq++) { for (int32 s = 0; s < supervision_.e2e_fsts[seq].NumStates(); s++) { final_probs_(seq, s)= -supervision_.e2e_fsts[seq].Final(s).Value(); BaseFloat offset = 0.0; if (s == 0) { for (fst::ArcIterator<fst::StdVectorFst> aiter( supervision_.e2e_fsts[seq], s); !aiter.Done(); aiter.Next()) if (aiter.Value().weight.Value() > offset) offset = aiter.Value().weight.Value(); offsets_(seq) = offset; } for (fst::ArcIterator<fst::StdVectorFst> aiter( supervision_.e2e_fsts[seq], s); !aiter.Done(); aiter.Next()) { const fst::StdArc &arc = aiter.Value(); DenominatorGraphTransition transition; transition.transition_prob = -(arc.weight.Value() - offset); int32 pdf_id = arc.ilabel - 1; // note: the FST labels were pdf-id plus one. // remap to a unique index in the remapped space pdf_id = pdf_id + seq * pdf_stride; KALDI_ASSERT(pdf_id < view_stride); if (pdf_to_index.find(pdf_id) == pdf_to_index.end()) { index_to_pdf_.push_back(pdf_id); pdf_to_index[pdf_id] = index_to_pdf_.size() - 1; } transition.pdf_id = pdf_to_index[pdf_id]; transition.hmm_state = s; in_transitions_[seq][arc.nextstate].push_back(transition); transition.hmm_state = arc.nextstate; out_transitions_[seq][s].push_back(transition); } } } } void GenericNumeratorComputation::AlphaFirstFrame(int seq, Matrix<BaseFloat> *alpha) { const int32 num_frames = supervision_.frames_per_sequence, num_states = supervision_.e2e_fsts[seq].NumStates(); alpha->Resize(num_frames + 1, num_states + 1, kSetZero); alpha->Set(-std::numeric_limits<BaseFloat>::infinity()); (*alpha)(0, 0) = 0.0; (*alpha)(0, num_states) = 0.0; } void GenericNumeratorComputation::CopySpecificPdfsIndirect( const CuMatrixBase<BaseFloat> &nnet_output, const std::vector<MatrixIndexT> &indices, Matrix<BaseFloat> *out) { KALDI_ASSERT(nnet_output_stride_ == nnet_output_.Stride()); const int32 num_sequences = supervision_.num_sequences, frames_per_sequence = supervision_.frames_per_sequence; const BaseFloat *starting_ptr = nnet_output.RowData(0); const int view_stride = num_sequences * nnet_output.Stride(); const CuSubMatrix<BaseFloat> sequence_view(starting_ptr, frames_per_sequence, view_stride, view_stride); CuArray<MatrixIndexT> indices_gpu(indices); CuMatrix<BaseFloat> required_pdfs(frames_per_sequence, indices.size()); required_pdfs.CopyCols(sequence_view, indices_gpu); out->Swap(&required_pdfs); } // The alpha computation for some 0 < t <= num_time_steps_. BaseFloat GenericNumeratorComputation::AlphaRemainingFrames(int seq, const Matrix<BaseFloat> &probs, Matrix<BaseFloat> *alpha) { // Define some variables to make things nicer const int32 num_sequences = supervision_.num_sequences, num_frames = supervision_.frames_per_sequence; KALDI_ASSERT(seq >= 0 && seq < num_sequences); // variables for log_likelihood computation double log_scale_product = 0, log_prob_product = 0; for (int t = 1; t <= num_frames; ++t) { const BaseFloat *probs_tm1 = probs.RowData(t - 1); BaseFloat *alpha_t = alpha->RowData(t); const BaseFloat *alpha_tm1 = alpha->RowData(t - 1); for (int32 h = 0; h < supervision_.e2e_fsts[seq].NumStates(); h++) { for (auto tr = in_transitions_[seq][h].begin(); tr != in_transitions_[seq][h].end(); ++tr) { BaseFloat transition_prob = tr->transition_prob; int32 pdf_id = tr->pdf_id, prev_hmm_state = tr->hmm_state; BaseFloat prob = probs_tm1[pdf_id]; alpha_t[h] = LogAdd(alpha_t[h], alpha_tm1[prev_hmm_state] + transition_prob + prob); } } double sum = alpha_tm1[alpha->NumCols() - 1]; SubMatrix<BaseFloat> alpha_t_mat(*alpha, t, 1, 0, alpha->NumCols() - 1); alpha_t_mat.Add(-sum); sum = alpha_t_mat.LogSumExp(); alpha_t[alpha->NumCols() - 1] = sum; log_scale_product += sum; } SubMatrix<BaseFloat> last_alpha(*alpha, alpha->NumRows() - 1, 1, 0, alpha->NumCols() - 1); SubVector<BaseFloat> final_probs(final_probs_.RowData(seq), alpha->NumCols() - 1); // adjust last_alpha double sum = (*alpha)(alpha->NumRows() - 1, alpha->NumCols() - 1); log_scale_product -= sum; last_alpha.AddVecToRows(1.0, final_probs); sum = last_alpha.LogSumExp(); (*alpha)(alpha->NumRows() - 1, alpha->NumCols() - 1) = sum; // second part of criterion log_prob_product = sum - offsets_(seq); return log_prob_product + log_scale_product; } bool GenericNumeratorComputation::ForwardBackward( BaseFloat *total_loglike, CuMatrixBase<BaseFloat> *nnet_output_deriv) { KALDI_ASSERT(total_loglike != NULL); KALDI_ASSERT(nnet_output_deriv != NULL); KALDI_ASSERT(nnet_output_deriv->NumCols() == nnet_output_.NumCols()); KALDI_ASSERT(nnet_output_deriv->NumRows() == nnet_output_.NumRows()); BaseFloat partial_loglike = 0; const int32 num_sequences = supervision_.num_sequences; bool ok = true; Matrix<BaseFloat> alpha; Matrix<BaseFloat> beta; Matrix<BaseFloat> probs; Matrix<BaseFloat> derivs; // We selectively copy only those pdfs we need CopySpecificPdfsIndirect(nnet_output_, index_to_pdf_, &probs); derivs.Resize(probs.NumRows(), probs.NumCols()); derivs.Set(-std::numeric_limits<BaseFloat>::infinity()); for (int seq = 0; seq < num_sequences; ++seq) { // Forward part AlphaFirstFrame(seq, &alpha); partial_loglike += AlphaRemainingFrames(seq, probs, &alpha); // Backward part BetaLastFrame(seq, alpha, &beta); BetaRemainingFrames(seq, probs, alpha, &beta, &derivs); if (GetVerboseLevel() >= 1) ok = ok && CheckValues(seq, probs, alpha, beta, derivs); } // Transfer and add the derivatives to the values in the matrix AddSpecificPdfsIndirect(&derivs, index_to_pdf_, nnet_output_deriv); *total_loglike = partial_loglike; return ok; } BaseFloat GenericNumeratorComputation::ComputeObjf() { BaseFloat partial_loglike = 0; const int32 num_sequences = supervision_.num_sequences; Matrix<BaseFloat> alpha; Matrix<BaseFloat> probs; // We selectively copy only those pdfs we need CopySpecificPdfsIndirect(nnet_output_, index_to_pdf_, &probs); for (int seq = 0; seq < num_sequences; ++seq) { // Forward part AlphaFirstFrame(seq, &alpha); partial_loglike += AlphaRemainingFrames(seq, probs, &alpha); } return partial_loglike; } BaseFloat GenericNumeratorComputation::GetTotalProb( const Matrix<BaseFloat> &alpha) { return alpha(alpha.NumRows() - 1, alpha.NumCols() - 1); } void GenericNumeratorComputation::BetaLastFrame(int seq, const Matrix<BaseFloat> &alpha, Matrix<BaseFloat> *beta) { // Sets up the beta quantity on the last frame (frame == // frames_per_sequence_). Note that the betas we use here contain a // 1/(tot-prob) factor in order to simplify the backprop. const int32 num_frames = supervision_.frames_per_sequence, num_states = supervision_.e2e_fsts[seq].NumStates(); float tot_prob = GetTotalProb(alpha); beta->Resize(2, num_states); beta->Set(-std::numeric_limits<BaseFloat>::infinity()); SubVector<BaseFloat> beta_mat(beta->RowData(num_frames % 2), num_states); SubVector<BaseFloat> final_probs(final_probs_.RowData(seq), num_states); BaseFloat inv_tot_prob = -tot_prob; beta_mat.Set(inv_tot_prob); beta_mat.AddVec(1.0, final_probs); } void GenericNumeratorComputation::BetaRemainingFrames(int seq, const Matrix<BaseFloat> &probs, const Matrix<BaseFloat> &alpha, Matrix<BaseFloat> *beta, Matrix<BaseFloat> *derivs) { const int32 num_sequences = supervision_.num_sequences, num_frames = supervision_.frames_per_sequence, num_states = supervision_.e2e_fsts[seq].NumStates(); KALDI_ASSERT(seq >= 0 && seq < num_sequences); for (int t = num_frames - 1; t >= 0; --t) { const BaseFloat *alpha_t = alpha.RowData(t), *beta_tp1 = beta->RowData((t + 1) % 2), *probs_t = probs.RowData(t); BaseFloat *log_prob_deriv_t = derivs->RowData(t), *beta_t = beta->RowData(t % 2); BaseFloat inv_arbitrary_scale = alpha_t[num_states]; for (int32 h = 0; h < supervision_.e2e_fsts[seq].NumStates(); h++) { BaseFloat tot_variable_factor; tot_variable_factor = -std::numeric_limits<BaseFloat>::infinity(); for (auto tr = out_transitions_[seq][h].begin(); tr != out_transitions_[seq][h].end(); ++tr) { BaseFloat transition_prob = tr->transition_prob; int32 pdf_id = tr->pdf_id, next_hmm_state = tr->hmm_state; BaseFloat variable_factor = transition_prob + beta_tp1[next_hmm_state] + probs_t[pdf_id] - inv_arbitrary_scale; tot_variable_factor = LogAdd(tot_variable_factor, variable_factor); BaseFloat occupation_prob = variable_factor + alpha_t[h]; log_prob_deriv_t[pdf_id] = LogAdd(log_prob_deriv_t[pdf_id], occupation_prob); } beta_t[h] = tot_variable_factor; } } } void GenericNumeratorComputation::AddSpecificPdfsIndirect( Matrix<BaseFloat> *logprobs, const std::vector<MatrixIndexT> &indices, CuMatrixBase<BaseFloat> *output) { const int32 num_sequences = supervision_.num_sequences, frames_per_sequence = supervision_.frames_per_sequence; const int view_stride = output->Stride() * num_sequences; KALDI_ASSERT(frames_per_sequence * num_sequences == output->NumRows()); CuMatrix<BaseFloat> specific_pdfs; specific_pdfs.Swap(logprobs); specific_pdfs.ApplyExp(); specific_pdfs.Scale(supervision_.weight); std::vector<MatrixIndexT> indices_expanded(view_stride, -1); for (int i = 0; i < indices.size(); ++i) { int pdf_index = indices[i]; int sequence_local_pdf_index = pdf_index % nnet_output_stride_; int sequence_index = pdf_index / nnet_output_stride_; pdf_index = sequence_local_pdf_index + sequence_index * output->Stride(); KALDI_ASSERT(pdf_index < view_stride); KALDI_ASSERT(i < specific_pdfs.NumCols()); indices_expanded[pdf_index] = i; } CuArray<MatrixIndexT> cu_indices(indices_expanded); CuSubMatrix<BaseFloat> out(output->Data(), frames_per_sequence, view_stride, view_stride); out.AddCols(specific_pdfs, cu_indices); } bool GenericNumeratorComputation::CheckValues(int seq, const Matrix<BaseFloat> &probs, const Matrix<BaseFloat> &alpha, const Matrix<BaseFloat> &beta, const Matrix<BaseFloat> &derivs) const { const int32 num_frames = supervision_.frames_per_sequence; // only check the derivs for the first and last frames const std::vector<int32> times = {0, num_frames - 1}; for (const int32 t: times) { BaseFloat deriv_sum = 0.0; for (int32 n = 0; n < probs.NumCols(); n++) { int32 pdf_stride = nnet_output_.Stride(); int32 pdf2seq = index_to_pdf_[n] / pdf_stride; if (pdf2seq != seq) // this pdf is not in the space of this sequence continue; deriv_sum += Exp(derivs(t, n)); } if (!ApproxEqual(deriv_sum, 1.0)) { KALDI_WARN << "On time " << t << " for seq " << seq << ", deriv sum " << deriv_sum << " != 1.0"; if (fabs(deriv_sum - 1.0) > 0.05 || deriv_sum - deriv_sum != 0) { KALDI_WARN << "Excessive error detected, will abandon this minibatch"; return false; } } } return true; } } // namespace chain } // namespace kaldi |