Blame view
src/chain/chain-numerator.cc
8.65 KB
8dcb6dfcb first commit |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 |
// chain/chain-numerator.cc // Copyright 2015 Johns Hopkins University (author: Daniel Povey) // See ../../COPYING for clarification regarding multiple authors // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY // KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED // WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE, // MERCHANTABLITY OR NON-INFRINGEMENT. // See the Apache 2 License for the specific language governing permissions and // limitations under the License. #include "chain/chain-numerator.h" #include "cudamatrix/cu-vector.h" namespace kaldi { namespace chain { NumeratorComputation::NumeratorComputation( const Supervision &supervision, const CuMatrixBase<BaseFloat> &nnet_output): supervision_(supervision), nnet_output_(nnet_output) { ComputeFstStateTimes(supervision_.fst, &fst_state_times_); KALDI_ASSERT(supervision.num_sequences * supervision.frames_per_sequence == nnet_output.NumRows() && supervision.label_dim == nnet_output.NumCols()); } void NumeratorComputation::ComputeLookupIndexes() { int32 num_states = supervision_.fst.NumStates(); int32 num_arcs_guess = num_states * 2; fst_output_indexes_.reserve(num_arcs_guess); int32 frames_per_sequence = supervision_.frames_per_sequence, num_sequences = supervision_.num_sequences, cur_time = 0; // the following is a CPU version of nnet_output_indexes_. It is a list of // pairs (row-index, column-index) which index nnet_output_. The row-index // corresponds to the time-frame 't', and the column-index the pdf-id, but we // have to be a little careful with the row-index because there is a // reordering that happens if supervision_.num_sequences > 1. // // output-index) and denominator_indexes_cpu is a list of pairs (c, // history-state-index). std::vector<Int32Pair> nnet_output_indexes_cpu; // index_map_this_frame is a map, only valid for t == cur_time, // from the pdf-id to the index into nnet_output_indexes_cpu for the // likelihood at (cur_time, pdf-id). unordered_map<int32,int32> index_map_this_frame; typedef unordered_map<int32,int32>::iterator IterType; for (int32 state = 0; state < num_states; state++) { int32 t = fst_state_times_[state]; if (t != cur_time) { KALDI_ASSERT(t == cur_time + 1); index_map_this_frame.clear(); cur_time = t; } for (fst::ArcIterator<fst::StdVectorFst> aiter(supervision_.fst, state); !aiter.Done(); aiter.Next()) { int32 pdf_id = aiter.Value().ilabel - 1; KALDI_ASSERT(pdf_id >= 0 && pdf_id < supervision_.label_dim); int32 index = nnet_output_indexes_cpu.size(); // the next few lines are a more efficient way of doing the following: // if (index_map_this_frame.count(pdf_id) == 0) { // index = index_map_this_frame[pdf_id] = nnet_output_indexes_cpu.size(); // nnet_output_indexes_cpu.push_back(pair(pdf_id, row-index)); // } else { // index = index_map_this_frame[pdf_id]; // } std::pair<IterType,bool> p = index_map_this_frame.insert( std::pair<const int32, int32>(pdf_id, index)); if (p.second) { // Was inserted -> map had no key 'output_index' Int32Pair pair; // we can't use constructors as this was declared in C. pair.first = ComputeRowIndex(t, frames_per_sequence, num_sequences); pair.second = pdf_id; nnet_output_indexes_cpu.push_back(pair); } else { // was not inserted -> set 'index' to the existing index. index = p.first->second; } fst_output_indexes_.push_back(index); } } nnet_output_indexes_ = nnet_output_indexes_cpu; KALDI_ASSERT(!fst_output_indexes_.empty()); } BaseFloat NumeratorComputation::Forward() { ComputeLookupIndexes(); nnet_logprobs_.Resize(nnet_output_indexes_.Dim(), kUndefined); nnet_output_.Lookup(nnet_output_indexes_, nnet_logprobs_.Data()); const fst::StdVectorFst &fst = supervision_.fst; KALDI_ASSERT(fst.Start() == 0); int32 num_states = fst.NumStates(); log_alpha_.Resize(num_states, kUndefined); log_alpha_.Set(-std::numeric_limits<double>::infinity()); tot_log_prob_ = -std::numeric_limits<double>::infinity(); log_alpha_(0) = 0.0; // note, state zero is the start state, we checked above const BaseFloat *nnet_logprob_data = nnet_logprobs_.Data(); std::vector<int32>::const_iterator fst_output_indexes_iter = fst_output_indexes_.begin(); double *log_alpha_data = log_alpha_.Data(); for (int32 state = 0; state < num_states; state++) { double this_log_alpha = log_alpha_data[state]; for (fst::ArcIterator<fst::StdVectorFst> aiter(fst, state); !aiter.Done(); aiter.Next(), ++fst_output_indexes_iter) { const fst::StdArc &arc = aiter.Value(); int32 nextstate = arc.nextstate; BaseFloat transition_logprob = -arc.weight.Value(); int32 index = *fst_output_indexes_iter; BaseFloat pseudo_loglike = nnet_logprob_data[index]; double &next_log_alpha = log_alpha_data[nextstate]; next_log_alpha = LogAdd(next_log_alpha, pseudo_loglike + transition_logprob + this_log_alpha); } if (fst.Final(state) != fst::TropicalWeight::Zero()) { BaseFloat final_logprob = -fst.Final(state).Value(); tot_log_prob_ = LogAdd(tot_log_prob_, this_log_alpha + final_logprob); } } KALDI_ASSERT(fst_output_indexes_iter == fst_output_indexes_.end()); return tot_log_prob_ * supervision_.weight; } void NumeratorComputation::Backward( CuMatrixBase<BaseFloat> *nnet_output_deriv) { const fst::StdVectorFst &fst = supervision_.fst; int32 num_states = fst.NumStates(); log_beta_.Resize(num_states, kUndefined); nnet_logprob_derivs_.Resize(nnet_logprobs_.Dim()); // we'll be counting backwards and moving the 'fst_output_indexes_iter' // pointer back. const int32 *fst_output_indexes_iter = &(fst_output_indexes_[0]) + fst_output_indexes_.size(); const BaseFloat *nnet_logprob_data = nnet_logprobs_.Data(); double tot_log_prob = tot_log_prob_; double *log_beta_data = log_beta_.Data(); const double *log_alpha_data = log_alpha_.Data(); BaseFloat *nnet_logprob_deriv_data = nnet_logprob_derivs_.Data(); for (int32 state = num_states - 1; state >= 0; state--) { int32 this_num_arcs = fst.NumArcs(state); // on the backward pass we access the fst_output_indexes_ vector in a zigzag // pattern. fst_output_indexes_iter -= this_num_arcs; const int32 *this_fst_output_indexes_iter = fst_output_indexes_iter; double this_log_beta = -fst.Final(state).Value(); double this_log_alpha = log_alpha_data[state]; for (fst::ArcIterator<fst::StdVectorFst> aiter(fst, state); !aiter.Done(); aiter.Next(), this_fst_output_indexes_iter++) { const fst::StdArc &arc = aiter.Value(); double next_log_beta = log_beta_data[arc.nextstate]; BaseFloat transition_logprob = -arc.weight.Value(); int32 index = *this_fst_output_indexes_iter; BaseFloat pseudo_loglike = nnet_logprob_data[index]; this_log_beta = LogAdd(this_log_beta, pseudo_loglike + transition_logprob + next_log_beta); BaseFloat occupation_logprob = this_log_alpha + pseudo_loglike + transition_logprob + next_log_beta - tot_log_prob, occupation_prob = exp(occupation_logprob); nnet_logprob_deriv_data[index] += occupation_prob; } // check for -inf. KALDI_PARANOID_ASSERT(this_log_beta - this_log_beta == 0); log_beta_data[state] = this_log_beta; } KALDI_ASSERT(fst_output_indexes_iter == &(fst_output_indexes_[0])); int32 start_state = 0; // the fact that the start state is numbered 0 is // implied by other properties of the FST // (epsilon-free-ness and topological sorting, and // connectedness). double tot_log_prob_backward = log_beta_(start_state); if (!ApproxEqual(tot_log_prob_backward, tot_log_prob_)) KALDI_WARN << "Disagreement in forward/backward log-probs: " << tot_log_prob_backward << " vs. " << tot_log_prob_; // copy this data to GPU. CuVector<BaseFloat> nnet_logprob_deriv_cuda; nnet_logprob_deriv_cuda.Swap(&nnet_logprob_derivs_); nnet_output_deriv->AddElements(supervision_.weight, nnet_output_indexes_, nnet_logprob_deriv_cuda.Data()); } } // namespace chain } // namespace kaldi |