Blame view
src/chainbin/nnet3-chain-acc-lda-stats.cc
8.9 KB
8dcb6dfcb first commit |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 |
// nnet3bin/nnet3-chain-acc-lda-stats.cc // Copyright 2015 Johns Hopkins University (author: Daniel Povey) // See ../../COPYING for clarification regarding multiple authors // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY // KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED // WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE, // MERCHANTABLITY OR NON-INFRINGEMENT. // See the Apache 2 License for the specific language governing permissions and // limitations under the License. #include "base/kaldi-common.h" #include "util/common-utils.h" #include "hmm/transition-model.h" #include "lat/lattice-functions.h" #include "nnet3/nnet-nnet.h" #include "nnet3/nnet-chain-example.h" #include "nnet3/nnet-compute.h" #include "nnet3/nnet-optimize.h" #include "transform/lda-estimate.h" namespace kaldi { namespace nnet3 { class NnetChainLdaStatsAccumulator { public: NnetChainLdaStatsAccumulator(BaseFloat rand_prune, const Nnet &nnet): rand_prune_(rand_prune), nnet_(nnet), compiler_(nnet) { } void AccStats(const NnetChainExample &eg) { ComputationRequest request; bool need_backprop = false, store_stats = false, need_xent = false, need_xent_deriv = false; GetChainComputationRequest(nnet_, eg, need_backprop, store_stats, need_xent, need_xent_deriv, &request); const NnetComputation &computation = *(compiler_.Compile(request)); NnetComputeOptions options; if (GetVerboseLevel() >= 3) options.debug = true; NnetComputer computer(options, computation, nnet_, NULL); computer.AcceptInputs(nnet_, eg.inputs); computer.Run(); const CuMatrixBase<BaseFloat> &nnet_output = computer.GetOutput("output"); if (eg.outputs[0].supervision.fst.NumStates() > 0) { AccStatsFst(eg, nnet_output); } else { AccStatsAlignment(eg, nnet_output); } } void WriteStats(const std::string &stats_wxfilename, bool binary) { if (lda_stats_.TotCount() == 0) { KALDI_ERR << "Accumulated no stats."; } else { WriteKaldiObject(lda_stats_, stats_wxfilename, binary); KALDI_LOG << "Accumulated stats, soft frame count = " << lda_stats_.TotCount() << ". Wrote to " << stats_wxfilename; } } private: void AccStatsFst(const NnetChainExample &eg, const CuMatrixBase<BaseFloat> &nnet_output) { BaseFloat rand_prune = rand_prune_; if (eg.outputs.size() != 1 || eg.outputs[0].name != "output") KALDI_ERR << "Expecting the example to have one output named 'output'."; const chain::Supervision &supervision = eg.outputs[0].supervision; // handling the one-sequence-per-eg case is easier so we just do that. KALDI_ASSERT(supervision.num_sequences == 1 && "This program expects one sequence per eg."); int32 num_frames = supervision.frames_per_sequence, num_pdfs = supervision.label_dim; KALDI_ASSERT(num_frames == nnet_output.NumRows()); const fst::StdVectorFst &fst = supervision.fst; Lattice lat; // convert the FST to a lattice, putting all the weight on // the graph weight. This is to save us having to implement the // forward-backward on FSTs. ConvertFstToLattice(fst, &lat); Posterior post; LatticeForwardBackward(lat, &post); KALDI_ASSERT(post.size() == static_cast<size_t>(num_frames)); // Subtract one, to convert the (pdf-id + 1) which appears in the // supervision FST, to a pdf-id. for (size_t i = 0; i < post.size(); i++) for (size_t j = 0; j < post[i].size(); j++) post[i][j].first--; if (lda_stats_.Dim() == 0) lda_stats_.Init(num_pdfs, nnet_output.NumCols()); for (int32 t = 0; t < num_frames; t++) { // the following, transferring row by row to CPU, would be wasteful if we // actually were using a GPU, but we don't anticipate using a GPU in this // program. CuSubVector<BaseFloat> cu_row(nnet_output, t); // "row" is actually just a redudant copy, since we're likely on CPU, // but we're about to do an outer product, so this doesn't dominate. Vector<BaseFloat> row(cu_row); std::vector<std::pair<int32,BaseFloat> >::const_iterator iter = post[t].begin(), end = post[t].end(); for (; iter != end; ++iter) { int32 pdf = iter->first; BaseFloat weight = iter->second; BaseFloat pruned_weight = RandPrune(weight, rand_prune); if (pruned_weight != 0.0) lda_stats_.Accumulate(row, pdf, pruned_weight); } } } void AccStatsAlignment(const NnetChainExample &eg, const CuMatrixBase<BaseFloat> &nnet_output) { BaseFloat rand_prune = rand_prune_; if (eg.outputs.size() != 1 || eg.outputs[0].name != "output") KALDI_ERR << "Expecting the example to have one output named 'output'."; const chain::Supervision &supervision = eg.outputs[0].supervision; // handling the one-sequence-per-eg case is easier so we just do that. KALDI_ASSERT(supervision.num_sequences == 1 && "This program expects one sequence per eg."); int32 num_frames = supervision.frames_per_sequence, num_pdfs = supervision.label_dim; KALDI_ASSERT(num_frames == nnet_output.NumRows()); if (supervision.alignment_pdfs.size() != static_cast<size_t>(num_frames)) KALDI_ERR << "Alignment pdfs not present or wrong length. Using e2e egs?"; if (lda_stats_.Dim() == 0) lda_stats_.Init(num_pdfs, nnet_output.NumCols()); for (int32 t = 0; t < num_frames; t++) { // the following, transferring row by row to CPU, would be wasteful if we // actually were using a GPU, but we don't anticipate using a GPU in this // program. CuSubVector<BaseFloat> cu_row(nnet_output, t); // "row" is actually just a redudant copy, since we're likely on CPU, // but we're about to do an outer product, so this doesn't dominate. Vector<BaseFloat> row(cu_row); int32 pdf = supervision.alignment_pdfs[t]; BaseFloat weight = 1.0; BaseFloat pruned_weight = RandPrune(weight, rand_prune); if (pruned_weight != 0.0) lda_stats_.Accumulate(row, pdf, pruned_weight); } } BaseFloat rand_prune_; const Nnet &nnet_; CachingOptimizingCompiler compiler_; LdaEstimate lda_stats_; }; } } int main(int argc, char *argv[]) { try { using namespace kaldi; using namespace kaldi::nnet3; typedef kaldi::int32 int32; typedef kaldi::int64 int64; const char *usage = "Accumulate statistics in the same format as acc-lda (i.e. stats for " "estimation of LDA and similar types of transform), starting from nnet+chain " "training examples. This program puts the features through the network, " "and the network output will be the features; the supervision in the " "training examples is used for the class labels. Used in obtaining " "feature transforms that help nnet training work better. " "Note: the time boundaries it gets from the chain supervision will be " "a little fuzzy (which is not ideal), but it should not matter much in " "this situation " " " "Usage: nnet3-chain-acc-lda-stats [options] <raw-nnet-in> <training-examples-in> <lda-stats-out> " "e.g.: " "nnet3-chain-acc-lda-stats 0.raw ark:1.cegs 1.acc " "See also: nnet-get-feature-transform "; bool binary_write = true; BaseFloat rand_prune = 0.0; ParseOptions po(usage); po.Register("binary", &binary_write, "Write output in binary mode"); po.Register("rand-prune", &rand_prune, "Randomized pruning threshold for posteriors"); po.Read(argc, argv); if (po.NumArgs() != 3) { po.PrintUsage(); exit(1); } std::string nnet_rxfilename = po.GetArg(1), examples_rspecifier = po.GetArg(2), lda_accs_wxfilename = po.GetArg(3); // Note: this neural net is probably just splicing the features at this // point. Nnet nnet; ReadKaldiObject(nnet_rxfilename, &nnet); NnetChainLdaStatsAccumulator accumulator(rand_prune, nnet); int64 num_egs = 0; SequentialNnetChainExampleReader example_reader(examples_rspecifier); for (; !example_reader.Done(); example_reader.Next(), num_egs++) accumulator.AccStats(example_reader.Value()); KALDI_LOG << "Processed " << num_egs << " examples."; // the next command will die if we accumulated no stats. accumulator.WriteStats(lda_accs_wxfilename, binary_write); return 0; } catch(const std::exception &e) { std::cerr << e.what() << ' '; return -1; } } |