Blame view
src/cudadecoder/cuda-decoder.cc
77.5 KB
8dcb6dfcb first commit |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 |
// cudadecoder/cuda-decoder.cc // // Copyright (c) 2019, NVIDIA CORPORATION. All rights reserved. // Hugo Braun, Justin Luitjens, Ryan Leary // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #if HAVE_CUDA == 1 #include "cuda-decoder.h" #include "cuda-decoder-kernels.h" #include <cuda_runtime_api.h> #include <nvToolsExt.h> #include <algorithm> #include <cfloat> #include <map> #include <tuple> namespace kaldi { namespace cuda_decoder { CudaDecoder::CudaDecoder(const CudaFst &fst, const CudaDecoderConfig &config, int32 nlanes, int32 nchannels) : fst_(fst), nlanes_(nlanes), nchannels_(nchannels), channel_lock_(nchannels + 1), extra_cost_min_delta_(0.0f), thread_pool_(NULL), n_threads_used_(0), n_h2h_task_not_done_(0), n_init_decoding_h2h_task_not_done_(0), h2h_threads_running_(true) { ReadConfig(config); // Static asserts on constants CheckStaticAsserts(); // Runtime asserts KALDI_ASSERT(nlanes > 0); KALDI_ASSERT(nchannels > 0); KALDI_ASSERT(nlanes_ <= nchannels_); // All GPU work in decoder will be sent to compute_st_ cudaStreamCreate(&compute_st_); // Copies D2H of tokens for storage on host are done on // copy_st_, in parallel with compute_st_ cudaStreamCreate(©_st_); // For all the allocating/initializing process // We create a special channel // containing the exact state a channel should have when starting a new decode // It contains fst.Start(), the non-emitting tokens created by fst.Start(), // and all the data used by the decoder. // When calling InitDecoding() on a new channel, we simply clone this special // channel into that new channel ++nchannels_; // adding the special initial channel init_channel_id_ = nchannels_ - 1; // Using last one as init_channel_params AllocateHostData(); AllocateDeviceData(); AllocateDeviceKernelParams(); InitDeviceParams(); InitHostData(); InitDeviceData(); KALDI_DECODER_CUDA_API_CHECK_ERROR(cudaEventCreate(&nnet3_done_evt_)); KALDI_DECODER_CUDA_API_CHECK_ERROR(cudaEventCreate(&d2h_copy_acoustic_evt_)); KALDI_DECODER_CUDA_API_CHECK_ERROR(cudaEventCreate(&d2h_copy_infotoken_evt_)); KALDI_DECODER_CUDA_API_CHECK_ERROR( cudaEventCreate(&d2h_copy_extra_prev_tokens_evt_)); KALDI_DECODER_CUDA_API_CHECK_ERROR( cudaEventCreate(&concatenated_data_ready_evt_)); KALDI_DECODER_CUDA_API_CHECK_ERROR(cudaEventCreate(&lane_offsets_ready_evt_)); ComputeInitialChannel(); --nchannels_; // removing the special initial channel from the count // Making sure that everything is ready to use cudaStreamSynchronize(compute_st_); KALDI_DECODER_CUDA_CHECK_ERROR(); } void CudaDecoder::ReadConfig(const CudaDecoderConfig &cst_config) { CudaDecoderConfig config = cst_config; // deep copy // Sets the missing values using other values config.ComputeConfig(); default_beam_ = config.default_beam; lattice_beam_ = config.lattice_beam; ntokens_pre_allocated_ = config.ntokens_pre_allocated; max_active_ = config.max_active; aux_q_capacity_ = config.aux_q_capacity; main_q_capacity_ = config.main_q_capacity; KALDI_ASSERT(default_beam_ >= 0.0f); KALDI_ASSERT(lattice_beam_ >= 0.0f); KALDI_ASSERT(ntokens_pre_allocated_ >= 0); KALDI_ASSERT(max_active_ > 0); KALDI_ASSERT(main_q_capacity_ > 0); KALDI_ASSERT(aux_q_capacity_ >= main_q_capacity_); } void CudaDecoder::AllocateDeviceData() { hashmap_capacity_ = KALDI_CUDA_DECODER_HASHMAP_CAPACITY_FACTOR * main_q_capacity_; d_channels_counters_.Resize(nchannels_, 1); d_lanes_counters_.Resize( nlanes_ + 1, 1); // +1 because we sometimes need last+1 value (for offsets) d_main_q_state_and_cost_.Resize(nchannels_, main_q_capacity_); d_main_q_info_.Resize(nlanes_, main_q_capacity_); d_aux_q_state_and_cost_.Resize(nlanes_, aux_q_capacity_); d_aux_q_info_.Resize(nlanes_, aux_q_capacity_); d_main_q_degrees_prefix_sum_.Resize(nchannels_, main_q_capacity_); d_histograms_.Resize(nlanes_, KALDI_CUDA_DECODER_HISTO_NBINS); d_main_q_extra_prev_tokens_prefix_sum_.Resize(nlanes_, main_q_capacity_); d_main_q_n_extra_prev_tokens_local_idx_.Resize(nlanes_, main_q_capacity_); d_main_q_state_hash_idx_.Resize(nlanes_, main_q_capacity_); d_main_q_extra_prev_tokens_.Resize(nlanes_, main_q_capacity_); d_main_q_extra_and_acoustic_cost_.Resize(nlanes_, main_q_capacity_); d_main_q_block_sums_prefix_sum_.Resize( nlanes_, KALDI_CUDA_DECODER_DIV_ROUND_UP(main_q_capacity_, KALDI_CUDA_DECODER_1D_BLOCK) + 1); d_main_q_arc_offsets_.Resize(nchannels_, main_q_capacity_); d_hashmap_values_.Resize(nlanes_, hashmap_capacity_); d_main_q_acoustic_cost_.Resize(nlanes_, main_q_capacity_); d_extra_and_acoustic_cost_concat_matrix_.Resize(nlanes_, main_q_capacity_); d_acoustic_cost_concat_matrix_.Resize(nlanes_, main_q_capacity_); d_infotoken_concat_matrix_.Resize(nlanes_, main_q_capacity_); d_extra_prev_tokens_concat_matrix_.Resize(nlanes_, main_q_capacity_); // Reusing data from aux_q. Those two are never used at the same time // d_list_final_tokens_in_main_q_ is used in GetBestPath. // the aux_q is used in AdvanceDecoding h_list_final_tokens_in_main_q_.Resize(nlanes_, main_q_capacity_); d_extra_prev_tokens_concat_ = d_extra_prev_tokens_concat_matrix_.lane(0); d_extra_and_acoustic_cost_concat_ = d_extra_and_acoustic_cost_concat_matrix_.lane(0); d_acoustic_cost_concat_ = d_acoustic_cost_concat_matrix_.lane(0); d_infotoken_concat_ = d_infotoken_concat_matrix_.lane(0); } void CudaDecoder::AllocateHostData() { channel_to_compute_.resize(nlanes_); KALDI_DECODER_CUDA_API_CHECK_ERROR(cudaMallocHost( &h_extra_and_acoustic_cost_concat_, nlanes_ * main_q_capacity_ * sizeof(*h_extra_and_acoustic_cost_concat_))); KALDI_DECODER_CUDA_API_CHECK_ERROR(cudaMallocHost( &h_acoustic_cost_concat_, nlanes_ * main_q_capacity_ * sizeof(*h_acoustic_cost_concat_))); KALDI_DECODER_CUDA_API_CHECK_ERROR(cudaMallocHost( &h_extra_prev_tokens_concat_, nlanes_ * main_q_capacity_ * sizeof(*h_extra_prev_tokens_concat_))); KALDI_DECODER_CUDA_API_CHECK_ERROR(cudaMallocHost( &h_infotoken_concat_, nlanes_ * main_q_capacity_ * sizeof(*h_infotoken_concat_))); KALDI_DECODER_CUDA_API_CHECK_ERROR( cudaMallocHost(&h_extra_and_acoustic_cost_concat_tmp_, nlanes_ * main_q_capacity_ * sizeof(*h_extra_and_acoustic_cost_concat_tmp_))); KALDI_DECODER_CUDA_API_CHECK_ERROR(cudaMallocHost( &h_acoustic_cost_concat_tmp_, nlanes_ * main_q_capacity_ * sizeof(*h_acoustic_cost_concat_tmp_))); KALDI_DECODER_CUDA_API_CHECK_ERROR(cudaMallocHost( &h_extra_prev_tokens_concat_tmp_, nlanes_ * main_q_capacity_ * sizeof(*h_extra_prev_tokens_concat_tmp_))); KALDI_DECODER_CUDA_API_CHECK_ERROR(cudaMallocHost( &h_infotoken_concat_tmp_, nlanes_ * main_q_capacity_ * sizeof(*h_infotoken_concat_tmp_))); h_lanes_counters_.Resize( nlanes_ + 1, 1); // +1 because we sometimes need last+1 value (for offsets) KALDI_DECODER_CUDA_API_CHECK_ERROR(cudaMallocHost( &h_channels_counters_, nchannels_ * sizeof(*h_channels_counters_))); h_all_tokens_extra_prev_tokens_extra_and_acoustic_cost_.resize(nchannels_); h_all_tokens_acoustic_cost_.resize(nchannels_); h_all_tokens_extra_prev_tokens_.resize(nchannels_); h_all_tokens_info_.resize(nchannels_); for (int32 ichannel = 0; ichannel < nchannels_; ++ichannel) { h_all_tokens_extra_prev_tokens_extra_and_acoustic_cost_[ichannel].reserve( ntokens_pre_allocated_); h_all_tokens_acoustic_cost_[ichannel].reserve(ntokens_pre_allocated_); h_all_tokens_info_[ichannel].reserve(ntokens_pre_allocated_); } h_main_q_end_lane_offsets_.resize(nlanes_ + 1); h_emitting_main_q_end_lane_offsets_.resize(nlanes_ + 1); h_n_extra_prev_tokens_lane_offsets_.resize(nlanes_ + 1); frame_offsets_.resize(nchannels_); num_frames_decoded_.resize(nchannels_, -1); lanes2channels_todo_.reserve(nlanes_); h_all_argmin_cost_.resize(nchannels_, {-1, 0.0f}); h_all_final_tokens_list_.resize(nchannels_); h_all_has_reached_final_.resize(nchannels_); } void CudaDecoder::InitDeviceData() { KALDI_DECODER_CUDA_API_CHECK_ERROR(cudaMemsetAsync( d_channels_counters_.MutableData(), 0, nchannels_ * sizeof(*d_channels_counters_.MutableData()), compute_st_)); KALDI_DECODER_CUDA_API_CHECK_ERROR(cudaMemsetAsync( d_lanes_counters_.MutableData(), 0, nlanes_ * sizeof(*d_lanes_counters_.MutableData()), compute_st_)); InitHashmapKernel(KaldiCudaDecoderNumBlocks(hashmap_capacity_, nlanes_), KALDI_CUDA_DECODER_1D_BLOCK, compute_st_, *h_device_params_); KALDI_DECODER_CUDA_CHECK_ERROR(); } void CudaDecoder::InitHostData() {} void CudaDecoder::AllocateDeviceKernelParams() { h_device_params_ = new DeviceParams(); h_kernel_params_ = new KernelParams(); } void CudaDecoder::InitDeviceParams() { // Setting Kernel Params // Sent to cuda kernels by copy // Making sure we'll be able to send it to the kernels KALDI_ASSERT((sizeof(KernelParams) + sizeof(DeviceParams)) < KALDI_CUDA_DECODER_MAX_KERNEL_ARGUMENTS_BYTE_SIZE); h_device_params_->d_channels_counters = d_channels_counters_.GetView(); h_device_params_->d_lanes_counters = d_lanes_counters_.GetView(); h_device_params_->h_lanes_counters = h_lanes_counters_.GetView(); h_device_params_->d_main_q_state_and_cost = d_main_q_state_and_cost_.GetView(); h_device_params_->d_main_q_info = d_main_q_info_.GetView(); h_device_params_->d_aux_q_state_and_cost = d_aux_q_state_and_cost_.GetView(); h_device_params_->d_main_q_extra_and_acoustic_cost = d_main_q_extra_and_acoustic_cost_.GetView(); h_device_params_->d_main_q_acoustic_cost = d_main_q_acoustic_cost_.GetView(); h_device_params_->d_aux_q_info = d_aux_q_info_.GetView(); h_device_params_->d_main_q_degrees_prefix_sum = d_main_q_degrees_prefix_sum_.GetView(); h_device_params_->d_main_q_block_sums_prefix_sum = d_main_q_block_sums_prefix_sum_.GetView(); h_device_params_->d_main_q_state_hash_idx = d_main_q_state_hash_idx_.GetView(); h_device_params_->d_main_q_extra_prev_tokens_prefix_sum = d_main_q_extra_prev_tokens_prefix_sum_.GetView(); h_device_params_->d_main_q_n_extra_prev_tokens_local_idx = d_main_q_n_extra_prev_tokens_local_idx_.GetView(); h_device_params_->d_main_q_extra_prev_tokens = d_main_q_extra_prev_tokens_.GetView(); h_device_params_->d_main_q_arc_offsets = d_main_q_arc_offsets_.GetView(); h_device_params_->d_hashmap_values = d_hashmap_values_.GetView(); h_device_params_->d_histograms = d_histograms_.GetView(); h_device_params_->d_arc_e_offsets = fst_.d_e_offsets_; h_device_params_->d_arc_ne_offsets = fst_.d_ne_offsets_; h_device_params_->d_arc_pdf_ilabels = fst_.d_arc_pdf_ilabels_; h_device_params_->d_arc_weights = fst_.d_arc_weights_; h_device_params_->d_arc_nextstates = fst_.d_arc_nextstates_; h_device_params_->d_fst_final_costs = fst_.d_final_; h_device_params_->default_beam = default_beam_; h_device_params_->lattice_beam = lattice_beam_; h_device_params_->main_q_capacity = main_q_capacity_; h_device_params_->aux_q_capacity = aux_q_capacity_; h_device_params_->init_channel_id = init_channel_id_; h_device_params_->max_nlanes = nlanes_; h_device_params_->nstates = fst_.num_states_; h_device_params_->init_state = fst_.Start(); KALDI_ASSERT(h_device_params_->init_state != fst::kNoStateId); h_device_params_->init_cost = StdWeight::One().Value(); h_device_params_->hashmap_capacity = hashmap_capacity_; h_device_params_->max_active = max_active_; // For the first static_beam_q_length elements of the queue, we will keep the // beam static adaptive_beam_static_segment_ = aux_q_capacity_ / KALDI_CUDA_DECODER_ADAPTIVE_BEAM_STATIC_SEGMENT; // For the last adaptive_beam_q_length elements of the queue, we will decrease // the beam, segment by segment // For more information, please refer to the definition of GetAdaptiveBeam in // cuda-decoder-kernels.cu int32 adaptive_beam_q_length = (aux_q_capacity_ - adaptive_beam_static_segment_); int32 adaptive_beam_bin_width = adaptive_beam_q_length / KALDI_CUDA_DECODER_ADAPTIVE_BEAM_NSTEPS; h_device_params_->adaptive_beam_static_segment = adaptive_beam_static_segment_; h_device_params_->adaptive_beam_bin_width = adaptive_beam_bin_width; // Reusing aux_q memory to list final states in GetLattice // Those cannot be used at the same time h_device_params_->h_list_final_tokens_in_main_q = h_list_final_tokens_in_main_q_.GetView(); } CudaDecoder::~CudaDecoder() { // Stopping h2h tasks h2h_threads_running_ = false; n_h2h_main_task_todo_cv_.notify_all(); for (std::thread &thread : cpu_dedicated_threads_) thread.join(); cudaStreamDestroy(compute_st_); cudaStreamDestroy(copy_st_); KALDI_DECODER_CUDA_API_CHECK_ERROR(cudaFreeHost(h_channels_counters_)); KALDI_DECODER_CUDA_API_CHECK_ERROR( cudaFreeHost(h_extra_and_acoustic_cost_concat_)); KALDI_DECODER_CUDA_API_CHECK_ERROR(cudaFreeHost(h_acoustic_cost_concat_)); KALDI_DECODER_CUDA_API_CHECK_ERROR(cudaFreeHost(h_extra_prev_tokens_concat_)); KALDI_DECODER_CUDA_API_CHECK_ERROR(cudaFreeHost(h_infotoken_concat_)); KALDI_DECODER_CUDA_API_CHECK_ERROR( cudaFreeHost(h_extra_and_acoustic_cost_concat_tmp_)); KALDI_DECODER_CUDA_API_CHECK_ERROR(cudaFreeHost(h_acoustic_cost_concat_tmp_)); KALDI_DECODER_CUDA_API_CHECK_ERROR( cudaFreeHost(h_extra_prev_tokens_concat_tmp_)); KALDI_DECODER_CUDA_API_CHECK_ERROR(cudaFreeHost(h_infotoken_concat_tmp_)); // Will call the cudaFrees inside destructors KALDI_DECODER_CUDA_API_CHECK_ERROR(cudaEventDestroy(nnet3_done_evt_)); KALDI_DECODER_CUDA_API_CHECK_ERROR(cudaEventDestroy(d2h_copy_acoustic_evt_)); KALDI_DECODER_CUDA_API_CHECK_ERROR(cudaEventDestroy(d2h_copy_infotoken_evt_)); KALDI_DECODER_CUDA_API_CHECK_ERROR( cudaEventDestroy(d2h_copy_extra_prev_tokens_evt_)); KALDI_DECODER_CUDA_API_CHECK_ERROR( cudaEventDestroy(concatenated_data_ready_evt_)); KALDI_DECODER_CUDA_API_CHECK_ERROR(cudaEventDestroy(lane_offsets_ready_evt_)); delete h_kernel_params_; delete h_device_params_; } void CudaDecoder::ComputeInitialChannel() { KALDI_ASSERT(nlanes_ > 0); const int32 ilane = 0; KALDI_ASSERT(ilane == 0); // Following kernels working channel_id std::vector<ChannelId> channels = {init_channel_id_}; SetChannelsInKernelParams(channels); // not calling LoadChannelsStateToLanes, // init_channel_id_ is a special case h_lanes_counters_.lane(ilane)->channel_to_compute = init_channel_id_; cudaMemcpyAsync(d_lanes_counters_.MutableData(), h_lanes_counters_.lane(0), 1 * sizeof(*h_lanes_counters_.lane(0)), cudaMemcpyHostToDevice, compute_st_); h_lanes_counters_.lane(ilane)->main_q_narcs_and_end.y = 0; // Adding the start state to the initial token queue InitializeInitialLaneKernel(KaldiCudaDecoderNumBlocks(1, 1), KALDI_CUDA_DECODER_ONE_THREAD_BLOCK, compute_st_, *h_device_params_); h_lanes_counters_.lane(ilane)->post_expand_aux_q_end = 1; PruneAndPreprocess(); FinalizeProcessNonEmittingKernel( KaldiCudaDecoderNumBlocks(1, 1), KALDI_CUDA_DECODER_LARGEST_1D_BLOCK, compute_st_, *h_device_params_, *h_kernel_params_); CopyLaneCountersToHostSync(); PostProcessingMainQueue(); CopyLaneCountersToHostSync(); const int32 main_q_end = h_lanes_counters_.lane(ilane)->main_q_narcs_and_end.y; KALDI_ASSERT(main_q_end > 0); // Moving all data linked to init_channel_id_ to host // that data will be cloned to other channels when calling InitDecoding CopyMainQueueDataToHost(); SaveChannelsStateFromLanes(); KALDI_ASSERT( h_channels_counters_[init_channel_id_].prev_main_q_narcs_and_end.x > 0); KALDI_ASSERT( h_channels_counters_[init_channel_id_].prev_main_q_narcs_and_end.y > 0); } void CudaDecoder::InitDecoding(const std::vector<ChannelId> &channels) { // Cloning the init_channel_id_ channel into all channels in the channels vec const int nlanes_used = channels.size(); // Getting *h_kernel_params ready to use LoadChannelsStateToLanes(channels); cudaMemcpyAsync(d_lanes_counters_.MutableData(), h_lanes_counters_.lane(0), nlanes_used_ * sizeof(*h_lanes_counters_.lane(0)), cudaMemcpyHostToDevice, compute_st_); // Size of the initial main_q ChannelCounters &init_channel_counters = h_channels_counters_[init_channel_id_]; const int32 init_main_q_size = init_channel_counters.prev_main_q_narcs_and_end.y; KALDI_ASSERT(init_main_q_size > 0); // Getting the channels ready to compute new utterances InitDecodingOnDeviceKernel( KaldiCudaDecoderNumBlocks(init_main_q_size, nlanes_used), KALDI_CUDA_DECODER_1D_BLOCK, compute_st_, *h_device_params_, *h_kernel_params_); { std::lock_guard<std::mutex> n_h2h_not_done_lk( n_init_decoding_h2h_task_not_done_mutex_); n_init_decoding_h2h_task_not_done_ += channels.size(); } for (ChannelId ichannel : channels) { ChannelCounters &channel_counters = h_channels_counters_[ichannel]; channel_counters.prev_main_q_narcs_and_end = init_channel_counters.prev_main_q_narcs_and_end; channel_counters.prev_main_q_n_extra_prev_tokens = init_channel_counters.prev_main_q_n_extra_prev_tokens; channel_counters.prev_main_q_global_offset = 0; channel_counters.prev_main_q_extra_prev_tokens_global_offset = 0; channel_counters.prev_beam = default_beam_; int32 n_initial_tokens = h_all_tokens_info_[init_channel_id_].size(); num_frames_decoded_[ichannel] = 0; h_channels_counters_[ichannel] = h_channels_counters_[init_channel_id_]; h_all_argmin_cost_[ichannel] = {-1, 0.0f}; frame_offsets_[ichannel].clear(); frame_offsets_[ichannel].push_back(n_initial_tokens); if (thread_pool_) thread_pool_->enqueue(THREAD_POOL_HIGH_PRIORITY, &CudaDecoder::InitDecodingH2HCopies, this, ichannel); else InitDecodingH2HCopies(ichannel); } } void CudaDecoder::InitDecodingH2HCopies(ChannelId ichannel) { // Tokens from initial main_q needed on host std::unique_lock<std::mutex> channel_lk(channel_lock_[ichannel]); // Deep copy h_all_tokens_info_[ichannel] = h_all_tokens_info_[init_channel_id_]; h_all_tokens_acoustic_cost_[ichannel] = h_all_tokens_acoustic_cost_[init_channel_id_]; h_all_tokens_extra_prev_tokens_[ichannel] = h_all_tokens_extra_prev_tokens_[init_channel_id_]; h_all_tokens_extra_prev_tokens_extra_and_acoustic_cost_[ichannel] = h_all_tokens_extra_prev_tokens_extra_and_acoustic_cost_[init_channel_id_]; bool all_done; { std::lock_guard<std::mutex> lk_not_done( n_init_decoding_h2h_task_not_done_mutex_); all_done = (--n_init_decoding_h2h_task_not_done_ == 0); } if (all_done) { init_decoding_h2h_done_.notify_all(); } } void CudaDecoder::LoadChannelsStateToLanes( const std::vector<ChannelId> &channels) { // Setting that channels configuration in kernel_params SetChannelsInKernelParams(channels); KALDI_ASSERT(nlanes_used_ > 0); for (LaneId ilane = 0; ilane < nlanes_used_; ++ilane) { const ChannelId ichannel = channel_to_compute_[ilane]; ChannelCounters &channel_counters = h_channels_counters_[ichannel]; LaneCounters &lane_counters = *h_lanes_counters_.lane(ilane); lane_counters.channel_to_compute = ichannel; lane_counters.main_q_narcs_and_end = channel_counters.prev_main_q_narcs_and_end; lane_counters.main_q_n_extra_prev_tokens = channel_counters.prev_main_q_n_extra_prev_tokens; int32 int_beam = floatToOrderedIntHost(channel_counters.prev_beam); lane_counters.int_beam = int_beam; lane_counters.adaptive_int_beam_with_validity_index.x = int_beam; lane_counters.adaptive_int_beam_with_validity_index.y = adaptive_beam_static_segment_; lane_counters.main_q_global_offset = channel_counters.prev_main_q_global_offset; lane_counters.main_q_extra_prev_tokens_global_offset = channel_counters.prev_main_q_extra_prev_tokens_global_offset; lane_counters.min_int_cost = channel_counters.min_int_cost_and_arg_without_final.x; lane_counters.prev_arg_min_int_cost = channel_counters.min_int_cost_and_arg_without_final.y; } } void CudaDecoder::SaveChannelsStateFromLanes() { KALDI_ASSERT(nlanes_used_ > 0); for (LaneId ilane = 0; ilane < nlanes_used_; ++ilane) { const ChannelId ichannel = channel_to_compute_[ilane]; ChannelCounters &channel_counters = h_channels_counters_[ichannel]; LaneCounters &lane_counters = *h_lanes_counters_.lane(ilane); channel_counters.prev_main_q_narcs_and_end = lane_counters.main_q_narcs_and_end; channel_counters.prev_main_q_extra_prev_tokens_global_offset = lane_counters.main_q_extra_prev_tokens_global_offset; channel_counters.prev_main_q_global_offset = lane_counters.main_q_global_offset; channel_counters.prev_main_q_n_extra_prev_tokens = lane_counters.main_q_n_extra_prev_tokens; channel_counters.prev_beam = orderedIntToFloatHost(lane_counters.int_beam); channel_counters.min_int_cost_and_arg_without_final = { lane_counters.min_int_cost, lane_counters.prev_arg_min_int_cost}; } SaveChannelsStateFromLanesKernel(KaldiCudaDecoderNumBlocks(1, nlanes_used_), KALDI_CUDA_DECODER_ONE_THREAD_BLOCK, compute_st_, *h_device_params_, *h_kernel_params_); ResetChannelsInKernelParams(); } int32 CudaDecoder::GetMaxForAllLanes( std::function<int32(const LaneCounters &)> func) { int32 max_val = 0; for (LaneId ilane = 0; ilane < nlanes_used_; ++ilane) { const int32 val = func(*h_lanes_counters_.lane(ilane)); max_val = std::max(max_val, val); } return max_val; } void CudaDecoder::CopyLaneCountersToHostAsync() { cudaMemcpyAsync(h_lanes_counters_.lane(0), d_lanes_counters_.MutableData(), nlanes_used_ * sizeof(*h_lanes_counters_.lane(0)), cudaMemcpyDeviceToHost, compute_st_); } void CudaDecoder::CopyLaneCountersToHostSync() { CopyLaneCountersToHostAsync(); cudaStreamSynchronize(compute_st_); } // One sync has to happen between PerformConcatenatedCopy and // MoveConcatenatedCopyToVector template <typename T> void CudaDecoder::MoveConcatenatedCopyToVector( const int32 ilane, const int32 ichannel, const std::vector<int32> &lanes_offsets, T *h_concat, std::vector<std::vector<T>> *vecvec) { // Unpacking the concatenated vector into individual channel storage int32 beg = lanes_offsets[ilane]; int32 end = lanes_offsets[ilane + 1]; auto &vec = (*vecvec)[ichannel]; vec.insert(vec.end(), h_concat + beg, h_concat + end); } void CudaDecoder::ApplyMaxActiveAndReduceBeam(enum QUEUE_ID queue_id) { // Checking if we should activate max active for the current frame // once it is active, it is active for the whole frame (for all non emitting // iterations) // If at least one lane queue is bigger than max_active, // we'll apply a topk on that queue (k=max_active_) bool use_aux_q = (queue_id == AUX_Q); ComputeCostsHistogramKernel(KaldiCudaDecoderNumBlocks(nlanes_used_), KALDI_CUDA_DECODER_1D_BLOCK, compute_st_, *h_device_params_, *h_kernel_params_, use_aux_q); UpdateBeamUsingHistogramKernel( KaldiCudaDecoderNumBlocks(1, nlanes_used_), KALDI_CUDA_DECODER_1D_BLOCK, compute_st_, *h_device_params_, *h_kernel_params_, use_aux_q); } int32 CudaDecoder::NumFramesToDecode( const std::vector<ChannelId> &channels, std::vector<CudaDecodableInterface *> &decodables, int32 max_num_frames) { int32 nframes_to_decode = INT_MAX; // std::vector<int> debug_ntokens; // std::vector<int> debug_narcs; for (int32 ilane = 0; ilane < nlanes_used_; ++ilane) { const ChannelId ichannel = channels[ilane]; const int32 num_frames_decoded = num_frames_decoded_[ichannel]; KALDI_ASSERT(num_frames_decoded >= 0 && "You must call InitDecoding() before AdvanceDecoding()"); int32 num_frames_ready = decodables[ilane]->NumFramesReady(); // num_frames_ready must be >= num_frames_decoded, or else // the number of frames ready must have decreased (which doesn't // make sense) or the decodable object changed between calls // (which isn't allowed). KALDI_ASSERT(num_frames_ready >= num_frames_decoded); int32 channel_nframes_to_decode = num_frames_ready - num_frames_decoded; nframes_to_decode = std::min(nframes_to_decode, channel_nframes_to_decode); } if (max_num_frames >= 0) nframes_to_decode = std::min(nframes_to_decode, max_num_frames); return nframes_to_decode; } void CudaDecoder::ExpandArcsEmitting() { ExpandArcsKernel<true>(KaldiCudaDecoderNumBlocks(nlanes_used_), KALDI_CUDA_DECODER_1D_BLOCK, compute_st_, *h_device_params_, *h_kernel_params_); // Updating a few counters, like resetting aux_q_end to 0... // true is for IS_EMITTING PostExpandKernel<true>(KaldiCudaDecoderNumBlocks(1, nlanes_used_), KALDI_CUDA_DECODER_ONE_THREAD_BLOCK, compute_st_, *h_device_params_, *h_kernel_params_); } void CudaDecoder::ExpandArcsNonEmitting() { // false is for non emitting ExpandArcsKernel<false>(KaldiCudaDecoderNumBlocks(nlanes_used_), KALDI_CUDA_DECODER_1D_BLOCK, compute_st_, *h_device_params_, *h_kernel_params_); // false is for non emitting PostExpandKernel<false>(KaldiCudaDecoderNumBlocks(1, nlanes_used_), KALDI_CUDA_DECODER_ONE_THREAD_BLOCK, compute_st_, *h_device_params_, *h_kernel_params_); } void CudaDecoder::PruneAndPreprocess() { NonEmittingPreprocessAndContractKernel( KaldiCudaDecoderNumBlocks(nlanes_used_), KALDI_CUDA_DECODER_1D_BLOCK, compute_st_, *h_device_params_, *h_kernel_params_); PostContractAndPreprocessKernel(KaldiCudaDecoderNumBlocks(1, nlanes_used_), KALDI_CUDA_DECODER_ONE_THREAD_BLOCK, compute_st_, *h_device_params_, *h_kernel_params_); } void CudaDecoder::PostProcessingMainQueue() { ApplyMaxActiveAndReduceBeam(MAIN_Q); FillHashmapWithMainQKernel(KaldiCudaDecoderNumBlocks(nlanes_used_), KALDI_CUDA_DECODER_1D_BLOCK, compute_st_, *h_device_params_, *h_kernel_params_); EmittingPreprocessAndListExtraPrevTokensStep1Kernel( KaldiCudaDecoderNumBlocks(nlanes_used_), KALDI_CUDA_DECODER_1D_BLOCK, compute_st_, *h_device_params_, *h_kernel_params_); EmittingPreprocessAndListExtraPrevTokensStep2Kernel( KaldiCudaDecoderNumBlocks(nlanes_used_), KALDI_CUDA_DECODER_1D_BLOCK, compute_st_, *h_device_params_, *h_kernel_params_); // Step2 wrote main_q_n_extra_prev_tokens // it was the last value missing to compute the lanes offsets // doing it now ComputeLaneOffsetsKernel(KaldiCudaDecoderNumBlocks(1, 1), // One CTA KALDI_CUDA_DECODER_1D_BLOCK, compute_st_, *h_device_params_, *h_kernel_params_); cudaEventRecord(lane_offsets_ready_evt_, compute_st_); EmittingPreprocessAndListExtraPrevTokensStep3Kernel( KaldiCudaDecoderNumBlocks(nlanes_used_), KALDI_CUDA_DECODER_1D_BLOCK, compute_st_, *h_device_params_, *h_kernel_params_); EmittingPreprocessAndListExtraPrevTokensStep4Kernel( KaldiCudaDecoderNumBlocks(nlanes_used_), KALDI_CUDA_DECODER_1D_BLOCK, compute_st_, *h_device_params_, *h_kernel_params_); ClearHashmapKernel(KaldiCudaDecoderNumBlocks(nlanes_used_), KALDI_CUDA_DECODER_1D_BLOCK, compute_st_, *h_device_params_, *h_kernel_params_); } void CudaDecoder::CopyMainQueueDataToHost() { cudaEventRecord(concatenated_data_ready_evt_, compute_st_); cudaStreamWaitEvent(copy_st_, concatenated_data_ready_evt_, 0); // the copies on copy_st will wait on compute_st_ cudaEventSynchronize( lane_offsets_ready_evt_); // we need the total size of each segments LaunchD2HCopies(); // Making sure the previous H2H copies are done WaitForInitDecodingH2HCopies(); WaitForH2HCopies(); std::swap(h_extra_and_acoustic_cost_concat_tmp_, h_extra_and_acoustic_cost_concat_); std::swap(h_infotoken_concat_tmp_, h_infotoken_concat_); std::swap(h_acoustic_cost_concat_tmp_, h_acoustic_cost_concat_); std::swap(h_extra_prev_tokens_concat_tmp_, h_extra_prev_tokens_concat_); // Saving the offsets computed previously lanes2channels_todo_.clear(); for (int32 ilane = 0; ilane < (nlanes_used_ + 1); ++ilane) { h_emitting_main_q_end_lane_offsets_[ilane] = h_lanes_counters_.lane(ilane)->main_q_n_emitting_tokens_lane_offset; h_main_q_end_lane_offsets_[ilane] = h_lanes_counters_.lane(ilane)->main_q_end_lane_offset; h_n_extra_prev_tokens_lane_offsets_[ilane] = h_lanes_counters_.lane(ilane)->main_q_n_extra_prev_tokens_lane_offset; lanes2channels_todo_.push_back(channel_to_compute_[ilane]); } LaunchH2HCopies(); } void CudaDecoder::LaunchD2HCopies() { // Last offset = total int32 nelements_acoustic_costs = h_lanes_counters_.lane(nlanes_used_) ->main_q_n_emitting_tokens_lane_offset; // Moving the d_concat to h_concat (host), async if (nelements_acoustic_costs > 0) { KALDI_DECODER_CUDA_API_CHECK_ERROR(cudaMemcpyAsync( h_acoustic_cost_concat_tmp_, d_acoustic_cost_concat_, nelements_acoustic_costs * sizeof(*d_acoustic_cost_concat_), cudaMemcpyDeviceToHost, copy_st_)); } cudaEventRecord(d2h_copy_acoustic_evt_, copy_st_); int32 nelements_infotoken = h_lanes_counters_.lane(nlanes_used_)->main_q_end_lane_offset; if (nelements_infotoken > 0) { KALDI_DECODER_CUDA_API_CHECK_ERROR( cudaMemcpyAsync(h_infotoken_concat_tmp_, d_infotoken_concat_, nelements_infotoken * sizeof(*d_infotoken_concat_), cudaMemcpyDeviceToHost, copy_st_)); } cudaEventRecord(d2h_copy_infotoken_evt_, copy_st_); int32 nelements_extra_prev_tokens = h_lanes_counters_.lane(nlanes_used_) ->main_q_n_extra_prev_tokens_lane_offset; if (nelements_extra_prev_tokens > 0) { KALDI_DECODER_CUDA_API_CHECK_ERROR(cudaMemcpyAsync( h_extra_prev_tokens_concat_tmp_, d_extra_prev_tokens_concat_, nelements_extra_prev_tokens * sizeof(*d_extra_prev_tokens_concat_), cudaMemcpyDeviceToHost, copy_st_)); KALDI_DECODER_CUDA_API_CHECK_ERROR( cudaMemcpyAsync(h_extra_and_acoustic_cost_concat_tmp_, d_extra_and_acoustic_cost_concat_, nelements_extra_prev_tokens * sizeof(*d_extra_and_acoustic_cost_concat_), cudaMemcpyDeviceToHost, copy_st_)); } cudaEventRecord(d2h_copy_extra_prev_tokens_evt_, copy_st_); } void CudaDecoder::ConcatenateData() { ConcatenateLanesDataKernel( KaldiCudaDecoderNumBlocks(nlanes_used_), KALDI_CUDA_DECODER_1D_BLOCK, compute_st_, *h_device_params_, *h_kernel_params_, h_device_params_->d_main_q_acoustic_cost, d_acoustic_cost_concat_, &d_lanes_counters_.lane(0)->main_q_n_emitting_tokens_lane_offset); ConcatenateLanesDataKernel( KaldiCudaDecoderNumBlocks(nlanes_used_), KALDI_CUDA_DECODER_1D_BLOCK, compute_st_, *h_device_params_, *h_kernel_params_, h_device_params_->d_main_q_info, d_infotoken_concat_, &d_lanes_counters_.lane(0)->main_q_end_lane_offset); ConcatenateLanesDataKernel( KaldiCudaDecoderNumBlocks(nlanes_used_), KALDI_CUDA_DECODER_1D_BLOCK, compute_st_, *h_device_params_, *h_kernel_params_, h_device_params_->d_main_q_extra_prev_tokens, d_extra_prev_tokens_concat_, &d_lanes_counters_.lane(0)->main_q_n_extra_prev_tokens_lane_offset); ConcatenateLanesDataKernel( KaldiCudaDecoderNumBlocks(nlanes_used_), KALDI_CUDA_DECODER_1D_BLOCK, compute_st_, *h_device_params_, *h_kernel_params_, h_device_params_->d_main_q_extra_and_acoustic_cost, d_extra_and_acoustic_cost_concat_, &d_lanes_counters_.lane(0)->main_q_n_extra_prev_tokens_lane_offset); } void CudaDecoder::AdvanceDecoding( const std::vector<ChannelId> &channels, std::vector<CudaDecodableInterface *> &decodables, int32 max_num_frames) { if (channels.size() == 0) return; // nothing to do // Context switch : Loading the channels state in lanes LoadChannelsStateToLanes(channels); KALDI_ASSERT(nlanes_used_ > 0); // We'll decode nframes_to_decode, such as all channels have at least that // number // of frames available int32 nframes_to_decode = NumFramesToDecode(channels, decodables, max_num_frames); // Looping over the frames that we will compute for (int32 iframe = 0; iframe < nframes_to_decode; ++iframe) { // Loglikelihoods from the acoustic model // Setting the loglikelihoods pointers for that frame for (LaneId ilane = 0; ilane < nlanes_used_; ++ilane) { ChannelId ichannel = channel_to_compute_[ilane]; int32 frame = num_frames_decoded_[ichannel]; h_lanes_counters_.lane(ilane)->loglikelihoods = decodables[ilane]->GetLogLikelihoodsCudaPointer(frame); } cudaMemcpyAsync(d_lanes_counters_.MutableData(), h_lanes_counters_.lane(0), nlanes_used_ * sizeof(*h_lanes_counters_.lane(0)), cudaMemcpyHostToDevice, compute_st_); // compute_st_ will wait for nnet3 to complete cudaEventRecord(nnet3_done_evt_, cudaStreamPerThread); cudaStreamWaitEvent(compute_st_, nnet3_done_evt_, 0); // Estimating cutoff using argmin from last frame ResetForFrameAndEstimateCutoffKernel( KaldiCudaDecoderNumBlocks(1, nlanes_used_), KALDI_CUDA_DECODER_1D_BLOCK, compute_st_, *h_device_params_, *h_kernel_params_); // Reset max active status. If necessary, ApplyMaxActiveAndReduceBeam will // switch it back on compute_max_active_ = false; // Processing emitting arcs. We've done the preprocess stage at the end of // the previous frame ExpandArcsEmitting(); // We'll loop until we have a small enough number of non-emitting arcs // in the token queue. We'll then break the loop for (int i = 0; i < KALDI_CUDA_DECODER_N_NON_EMITTING_MAIN_ITERATIONS; ++i) { // If one of the aux_q contains more than max_active_ tokens, // we'll reduce the beam to only keep max_active_ tokens ApplyMaxActiveAndReduceBeam(AUX_Q); // Prune the aux_q. Apply the latest beam (using the one from // ApplyMaxActiveAndReduceBeam if triggered) // move the survival tokens to the main queue // and do the preprocessing necessary for the next ExpandArcs PruneAndPreprocess(); // "heavy duty" kernel for non-emitting. The long tail of small // non-emitting iterations will be done in // FinalizeProcessNonEmittingKernel ExpandArcsNonEmitting(); } ApplyMaxActiveAndReduceBeam(AUX_Q); PruneAndPreprocess(); // Finalizing process non emitting. Takes care of the long tail, // the final iterations with a small numbers of arcs. Do the work inside a // single CTA (per lane), FinalizeProcessNonEmittingKernel(KaldiCudaDecoderNumBlocks(1, nlanes_used_), KALDI_CUDA_DECODER_LARGEST_1D_BLOCK, compute_st_, *h_device_params_, *h_kernel_params_); // We now have our final token main queues for that frame // Post processing the tokens for that frame // - do the preprocess necessary for the next emitting expand (will happen // with next frame) // - if a state S has more than one token associated to it, generate the // list of those tokens // It allows to backtrack efficiently in GetRawLattice // - compute the extra costs PostProcessingMainQueue(); // Waiting on previous d2h before writing on same device memory cudaStreamWaitEvent(compute_st_, d2h_copy_extra_prev_tokens_evt_, 0); // Concatenating the data that will be moved to host into large arrays ConcatenateData(); // Copying the final lane counters for that frame CopyLaneCountersToHostSync(); CheckOverflow(); // Moving the data necessary for GetRawLattice/GetBestPath back to host for // storage CopyMainQueueDataToHost(); for (LaneId ilane = 0; ilane < nlanes_used_; ++ilane) { const ChannelId ichannel = channel_to_compute_[ilane]; // We're done processing that frame ++num_frames_decoded_[ichannel]; const int32 main_q_end = h_lanes_counters_.lane(ilane)->main_q_narcs_and_end.y; // Saving frame offsets for GetRawLattice frame_offsets_[ichannel].push_back(frame_offsets_[ichannel].back() + main_q_end); } } SaveChannelsStateFromLanes(); } void CudaDecoder::CheckOverflow() { for (LaneId ilane = 0; ilane < nlanes_used_; ++ilane) { LaneCounters *lane_counters = h_lanes_counters_.lane(ilane); bool q_overflow = lane_counters->q_overflow; if (q_overflow != OVERFLOW_NONE) { // An overflow was prevented in a kernel // The algorithm can still go on but quality of the result can be reduced // (less tokens were generated) if ((q_overflow & OVERFLOW_MAIN_Q) == OVERFLOW_MAIN_Q) { // overflowed main_q KALDI_WARN << "Preventing overflow of main_q. Continuing " << "execution but the quality of the output may be decreased. " << "To prevent this from happening, please increase the parameter " "--main-q-capacity" << " and/or decrease --max-active"; } if ((q_overflow & OVERFLOW_AUX_Q) == OVERFLOW_AUX_Q) { // overflowed aux_q KALDI_WARN << "Preventing overflow of aux_q. Continuing " << "execution but the quality of the output may be decreased. " << "To prevent this from happening, please increase the parameter " "--aux-q-capacity" << " and/or decrease --beam"; } KALDI_ASSERT(lane_counters->main_q_narcs_and_end.y < main_q_capacity_); KALDI_ASSERT(lane_counters->main_q_narcs_and_end.x >= 0); KALDI_ASSERT(lane_counters->main_q_narcs_and_end.y >= 0); KALDI_ASSERT(lane_counters->post_expand_aux_q_end < aux_q_capacity_); KALDI_ASSERT(lane_counters->post_expand_aux_q_end >= 0); KALDI_ASSERT(lane_counters->aux_q_end < aux_q_capacity_); KALDI_ASSERT(lane_counters->aux_q_end >= 0); } } } // GetBestCost // returns the minimum cost among all tokens cost in the current frame // also returns the index of one token with that min cost // // Only called at the end of the computation of one audio file // not optimized void CudaDecoder::GetBestCost(const std::vector<ChannelId> &channels, bool use_final_costs, std::vector<std::pair<int32, CostType>> *argmins, std::vector<std::vector<std::pair<int, float>>> *list_finals_token_idx_and_cost, std::vector<bool> *has_reached_final) { if (channels.size() == 0) return; // Getting the lanes ready to be used with those channels LoadChannelsStateToLanes(channels); cudaMemcpyAsync(d_lanes_counters_.MutableData(), h_lanes_counters_.lane(0), nlanes_used_ * sizeof(*h_lanes_counters_.lane(0)), cudaMemcpyHostToDevice, compute_st_); auto func_main_q_end = [](const LaneCounters &c) { return c.main_q_narcs_and_end.y; }; int32 max_main_q_end = GetMaxForAllLanes(func_main_q_end); // Step1 : Finding the best cost in the last token queue, with and without // final costs. // Also saving the indexes of those min. GetBestCostStep1Kernel( KaldiCudaDecoderNumBlocks(max_main_q_end, nlanes_used_), KALDI_CUDA_DECODER_1D_BLOCK, compute_st_, *h_device_params_, *h_kernel_params_, use_final_costs, StdWeight::Zero().Value()); // Step2: Now that we now what the minimum cost is, we list all tokens within // [min_cost; min_cost+lattice_beam] // min_cost takes into account the final costs if use_final_costs is true, // AND if a final state is is present in the last token queue GetBestCostStep2Kernel( KaldiCudaDecoderNumBlocks(max_main_q_end, nlanes_used_), KALDI_CUDA_DECODER_1D_BLOCK, compute_st_, *h_device_params_, *h_kernel_params_, use_final_costs, StdWeight::Zero().Value()); // Step3 : Moves some data to host. We are moving the data that couldn't be // moved // directly in step 2, e.g. results of atomics (we don't know which one is // last) GetBestCostStep3Kernel( KaldiCudaDecoderNumBlocks(max_main_q_end, nlanes_used_), KALDI_CUDA_DECODER_1D_BLOCK, compute_st_, *h_device_params_, *h_kernel_params_); // Resetting the datastructures argmins->clear(); has_reached_final->clear(); list_finals_token_idx_and_cost->clear(); // list_finals_token_idx_and_cost is a vector<vector<>> // Each channel will have its own list of tokens within [best; // best+lattice_beam] list_finals_token_idx_and_cost->resize(nlanes_used_); // Waiting for the copy cudaStreamSynchronize(compute_st_); for (int32 ilane = 0; ilane < nlanes_used_; ++ilane) { int2 minarg = h_lanes_counters_.lane(ilane)->min_int_cost_and_arg; // Min cost in that channel last token queue CostType min_cost = orderedIntToFloatHost(minarg.x); // index of that min cost int32 arg = minarg.y; // Saving both in output argmins->push_back({arg, min_cost}); // Whether or not the last token queue contains at least one token // associated with a final FST state has_reached_final->push_back( h_lanes_counters_.lane(ilane)->has_reached_final); // Number of tokens within [min_cost; min_cost+lattice_beam] int n_within_lattice_beam = h_lanes_counters_.lane(ilane)->n_within_lattice_beam; // Loading those tokens (*list_finals_token_idx_and_cost)[ilane].resize(n_within_lattice_beam); // Moving to output + int2float conversion for (int i = 0; i < n_within_lattice_beam; ++i) { int global_idx = h_list_final_tokens_in_main_q_.lane(ilane)[i].x; float cost_with_final = orderedIntToFloatHost( h_list_final_tokens_in_main_q_.lane(ilane)[i].y); (*list_finals_token_idx_and_cost)[ilane][i].first = global_idx; (*list_finals_token_idx_and_cost)[ilane][i].second = cost_with_final; } } } void CudaDecoder::GetBestPath(const std::vector<ChannelId> &channels, std::vector<Lattice *> &fst_out_vec, bool use_final_probs) { KALDI_ASSERT(channels.size() == fst_out_vec.size()); nvtxRangePushA("GetBestPath"); GetBestCost(channels, use_final_probs, &argmins_, &list_finals_token_idx_and_cost_, &has_reached_final_); std::vector<int32> reversed_path; for (int32 ilane = 0; ilane < channels.size(); ++ilane) { const ChannelId ichannel = channels[ilane]; const int32 token_with_best_cost = argmins_[ilane].first; std::unique_lock<std::mutex> channel_lk(channel_lock_[ichannel]); // If that token in that frame f is available, then all tokens in that frame // f are available WaitForH2HCopies(); const bool isfinal = has_reached_final_[ilane]; TokenId token_idx = token_with_best_cost; // Backtracking // Going all the way from the token with best cost // to the beginning (StartState) reversed_path.clear(); // The first token was inserted at the beginning of the queue // it always has index 0 // We backtrack until that first token while (token_idx != 0) { InfoToken token = h_all_tokens_info_[ichannel][token_idx]; // We want an arc with extra_cost == 0 int32 arc_idx; TokenId prev_token_idx; if (token.IsUniqueTokenForStateAndFrame()) { // If we have only one, it is an arc with extra_cost == 0 arc_idx = token.arc_idx; prev_token_idx = token.prev_token; } else { // Using the first arc with extra_cost == 0 int32 offset, size; std::tie(offset, size) = token.GetSameFSTStateTokensList(); bool found_best = false; for (auto i = 0; i < size; ++i) { CostType arc_extra_cost = h_all_tokens_extra_prev_tokens_extra_and_acoustic_cost_[ichannel] [offset + i].x; // Picking one arc on the best path (extra_cost == 0) if (arc_extra_cost == 0.0f) { InfoToken list_token = h_all_tokens_extra_prev_tokens_[ichannel][offset + i]; arc_idx = list_token.arc_idx; prev_token_idx = list_token.prev_token; found_best = true; break; } } KALDI_ASSERT(found_best); } reversed_path.push_back(arc_idx); token_idx = prev_token_idx; } Lattice *fst_out = fst_out_vec[ilane]; fst_out->DeleteStates(); // Building the output Lattice OutputLatticeState curr_state = fst_out->AddState(); fst_out->SetStart(curr_state); for (int32 i = reversed_path.size() - 1; i >= 1; i--) { int32 arc_idx = reversed_path[i]; LatticeArc arc(fst_.h_arc_id_ilabels_[arc_idx], fst_.h_arc_olabels_[arc_idx], LatticeWeight(fst_.h_arc_weights_[arc_idx], 0), fst_.h_arc_nextstate_[arc_idx]); arc.nextstate = fst_out->AddState(); fst_out->AddArc(curr_state, arc); curr_state = arc.nextstate; } // Adding final cost to final state if (isfinal && use_final_probs) fst_out->SetFinal( curr_state, LatticeWeight(fst_.h_final_[fst_.h_arc_nextstate_[reversed_path[0]]], 0.0)); else fst_out->SetFinal(curr_state, LatticeWeight::One()); fst::RemoveEpsLocal(fst_out); } nvtxRangePop(); } void CudaDecoder::DebugValidateLattice() { #if 0 //validate lattice consistency for(int frame=0;frame<nframes;frame++) { int token_start=frame_offsets_[ichannel][frame]; int token_end=(frame+1<nframes) ? frame_offsets_[ichannel][frame+1] : total_ntokens; int prev_frame_offset=(frame>0) ? frame_offsets_[ichannel][frame-1] : 0; int cur_frame_offset=token_start; int next_frame_offset=token_end; bool found_zero = false; //for each token in frame for(int i=token_start;i<token_end;i++) { if(i==0) continue; //initial token skip this... InfoToken token=h_all_tokens_info_[ichannel][i]; KALDI_ASSERT(token.prev_token>=0); if(token.IsUniqueTokenForStateAndFrame()) { //previous token must be lower than the next frame start KALDI_ASSERT(token.prev_token<next_frame_offset); //previous token must be larger then previous frame start KALDI_ASSERT(token.prev_token>=prev_frame_offset); } else { int32 offset, size; std::tie(offset,size) = token.GetNextStateTokensList(); KALDI_ASSERT(size>0); KALDI_ASSERT(offset>=0 && offset<h_all_tokens_extra_prev_tokens_[ichannel].size()); for(auto j=0; j<size; ++j) { KALDI_ASSERT(offset+j<h_all_tokens_extra_prev_tokens_[ichannel].size()); InfoToken extra_token=h_all_tokens_extra_prev_tokens_[ichannel][offset+j]; //previous token must be lower than the next frame start KALDI_ASSERT(extra_token.prev_token<next_frame_offset); //previous token must be larger then previous frame start KALDI_ASSERT(extra_token.prev_token>=prev_frame_offset); } } } } #endif } CudaDecoder::LatticeStateInternalId CudaDecoder::GetLatticeStateInternalId( int32 total_ntokens, TokenId token_idx, InfoToken token) { // If we have a unique token for this (frame,fst_state) // Then its ID is a unique ID for (frame,fst_state) if (token.IsUniqueTokenForStateAndFrame()) return token_idx; // If we have multiple tokens for this (frame,fst_state), // let's use the "extra_prev_tokens" offset, which is unique for // (frame,fst_state) in that case // Adding the total_ntokens offset to avoid collisions with the previous // case return (total_ntokens + token.prev_token); } void CudaDecoder::AddFinalTokensToLattice( ChannelId ichannel, std::vector<std::pair<TokenId, InfoToken>> *q_curr_frame_todo, std::unordered_map<LatticeStateInternalId, RawLatticeState> *curr_f_raw_lattice_state, Lattice *fst_out) { // Total number of tokens for that utterance. Used in // GetLatticeStateInternalId const int32 total_ntokens = h_all_tokens_info_[ichannel].size(); // Reading the overall best_cost for that utterance's last frame. Was set by // GetBestCost const CostType best_cost = h_all_argmin_cost_[ichannel].second; // Iterating through tokens associated with a final state in the last frame for (auto &p : h_all_final_tokens_list_[ichannel]) { // This final token has a final cost of final_token_cost CostType final_token_cost = p.second; // This token has possibly an extra cost compared to the best CostType extra_cost = final_token_cost - best_cost; // We only want to keep paths that have a cost within [best; // best+lattice_beam] if (extra_cost > lattice_beam_) { continue; } const TokenId final_token_idx = p.first; InfoToken final_token = h_all_tokens_info_[ichannel][final_token_idx]; // Internal ID for our lattice_state=(iframe, fst_state) LatticeStateInternalId state_internal_id = GetLatticeStateInternalId(total_ntokens, final_token_idx, final_token); decltype(curr_f_raw_lattice_state->end()) map_it; bool inserted; // We need to create the fst_lattice_state linked to our internal id in the // lattice if it doesn't already exists // Inserts only if the key doesn't exist in the map std::tie(map_it, inserted) = curr_f_raw_lattice_state->insert( {state_internal_id, {FLT_MAX, -1, false}}); // If we've inserted the element, it means that that state didn't exist in // the map // Because this is a final state, we need to do a bit of extra work to add // the final_cost to it if (inserted) { // We want to figure out which FST state this token is associated to // We don't have that info anymore, it wasn't transfered from the GPU // We still need it for final tokens, because we need to know which // final cost to add in the lattice. // To find that original FST state, we need the id of an arc going to // that state, // then we'll look in the graph and figure out next_state[arc_idx] // we just need a valid arc_idx int32 arc_idx; if (final_token.IsUniqueTokenForStateAndFrame()) { // If unique, we can directly use this arc_idx arc_idx = final_token.arc_idx; } else { // If we have multiple tokens associated to that fst state, just pick // the first one // from the list int32 offset, size; std::tie(offset, size) = final_token.GetSameFSTStateTokensList(); InfoToken prev_token = h_all_tokens_extra_prev_tokens_[ichannel][offset]; arc_idx = prev_token.arc_idx; } // Creating the state associated with our internal id in the lattice OutputLatticeState fst_lattice_final_state = fst_out->AddState(); map_it->second.fst_lattice_state = fst_lattice_final_state; q_curr_frame_todo->push_back({final_token_idx, final_token}); if (h_all_has_reached_final_[ichannel]) { // If we have reached final states, adding the final cost // We now have a valid arc_idx. We can read the FST state StateId fst_next_state = fst_.h_arc_nextstate_[arc_idx]; fst_out->SetFinal(fst_lattice_final_state, LatticeWeight(fst_.h_final_[fst_next_state], 0.0)); } else { fst_out->SetFinal(fst_lattice_final_state, LatticeWeight::One()); } } map_it->second.token_extra_cost = std::min(map_it->second.token_extra_cost, extra_cost); } } void CudaDecoder::AddArcToLattice( int32 list_arc_idx, TokenId list_prev_token_idx, InfoToken list_prev_token, int32 curr_frame_offset, CostType acoustic_cost, CostType this_arc_prev_token_extra_cost, LatticeStateInternalId src_state_internal_id, OutputLatticeState fst_lattice_start, OutputLatticeState to_fst_lattice_state, std::vector<std::pair<TokenId, InfoToken>> *q_curr_frame_todo, std::vector<std::pair<TokenId, InfoToken>> *q_prev_frame_todo, std::unordered_map<LatticeStateInternalId, RawLatticeState> *curr_f_raw_lattice_state, std::unordered_map<LatticeStateInternalId, RawLatticeState> *prev_f_raw_lattice_state, std::unordered_set<int32> *f_arc_idx_added, Lattice *fst_out, bool *must_replay_frame) { // We will now add this arc to the output lattice // We know the destination state of the arc (to_fst_lattice_state) // We need to figure out its source // And propagate the extra cost from the destination to the source of that arc // (we go backward) OutputLatticeState from_fst_lattice_state; // Having the predecessor in the previous frame // <=> that token is associated to an emiting arc bool emitting = (list_prev_token_idx < curr_frame_offset); // Checking if the source of that arc is the start state (original state at // the beginning of the decode) if (list_prev_token_idx != 0) { // Selecting the right map // - emitting arc -> previous frame map // - non emitting arc -> same frame map auto *extra_cost_map = emitting ? prev_f_raw_lattice_state : curr_f_raw_lattice_state; decltype(extra_cost_map->end()) from_map_it; bool inserted; // Attempting to insert the state in the map std::tie(from_map_it, inserted) = extra_cost_map->insert({src_state_internal_id, {FLT_MAX, -1, false}}); // If it was inserted, its the first time we insert that key in // the map // we need to put that state in the todo list to be considered // next if (inserted) { auto *todo_list = emitting ? q_prev_frame_todo : q_curr_frame_todo; todo_list->push_back({list_prev_token_idx, list_prev_token}); from_map_it->second.fst_lattice_state = fst_out->AddState(); } // Updating the source extra cost using that arc // for an arc a->b // extra_cost(a) = min(extra_cost(a), // extra_cost(b) + arc_extra_cost(a->b)) CostType prev_token_extra_cost = from_map_it->second.token_extra_cost; if (this_arc_prev_token_extra_cost < prev_token_extra_cost) { // We found a new min CostType diff = (prev_token_extra_cost - this_arc_prev_token_extra_cost); // If the change is large enough, // and if the state that we're writing to was already closed, // then we need to replay that frame. // if the source state is already closed it means we've // read its extra_cost value. Now we're writing again to it. // We have to do the first read again, to get the updated // value // that's why we're replaying that frame // (between frames everything is in topological order) if (diff > extra_cost_min_delta_ && from_map_it->second.is_state_closed) { *must_replay_frame = true; } prev_token_extra_cost = this_arc_prev_token_extra_cost; from_map_it->second.token_extra_cost = prev_token_extra_cost; } // Reading the OutputLatticeState of the source state in the output lattice from_fst_lattice_state = from_map_it->second.fst_lattice_state; } else { from_fst_lattice_state = fst_lattice_start; // we simply link it to the source } // Checking if it's the first time we insert an arc with that // arc_idx for that frame. // If we're replaying that frame, we don't want duplicates bool is_this_arc_new = f_arc_idx_added->insert(list_arc_idx).second; if (is_this_arc_new) { // The following reads will most likely end up in cache misses // we could load everything sooner LatticeArc arc( fst_.h_arc_id_ilabels_[list_arc_idx], fst_.h_arc_olabels_[list_arc_idx], LatticeWeight(fst_.h_arc_weights_[list_arc_idx], acoustic_cost), to_fst_lattice_state); fst_out->AddArc(from_fst_lattice_state, arc); } } void CudaDecoder::GetTokenRawLatticeData( TokenId token_idx, InfoToken token, int32 total_ntokens, std::unordered_map<LatticeStateInternalId, RawLatticeState> *curr_f_raw_lattice_state, CostType *token_extra_cost, OutputLatticeState *to_fst_lattice_state) { LatticeStateInternalId next_state_internal_id = GetLatticeStateInternalId(total_ntokens, token_idx, token); auto to_map_it = curr_f_raw_lattice_state->find(next_state_internal_id); // We know this token exists in the output lattice (because it's in // q_curr_frame_todo_) KALDI_ASSERT(to_map_it != curr_f_raw_lattice_state->end()); *token_extra_cost = to_map_it->second.token_extra_cost; *to_fst_lattice_state = to_map_it->second.fst_lattice_state; // We read the extra cost from lattice_next_state // We are now closing the state. If we write to it again, we will have // to replay that frame // (so that the latest extra_cost value is read) to_map_it->second.is_state_closed = true; } void CudaDecoder::GetSameFSTStateTokenList( ChannelId ichannel, InfoToken token, InfoToken **tok_beg, float2 **extra_extra_and_acoustic_cost_beg, int32 *nsame) { // We now need to consider all tokens related to that (iframe, // fst_state) // with fst_state being the state this current token is linked to // There's two possibilies: // a) only one token is associated with that fst_state in that frame. // The necessary information // is then stored directly in the token (arc_idx, prev_token) // b) multiple tokens are associated with that fst_state in that // frame. The token that we have right now // only contains information on where to find the list of those // tokens. It contains (offset, size) // // In any cases we consider the list of tokens to process as an array // of InfoToken, which will // be of size 1 in case a), of size > 1 in case b) if (token.IsUniqueTokenForStateAndFrame()) { *tok_beg = &token; // if we've got only one, extra_cost == 0.0 *extra_extra_and_acoustic_cost_beg = NULL; *nsame = 1; } else { int32 offset, size; std::tie(offset, size) = token.GetSameFSTStateTokensList(); *tok_beg = &h_all_tokens_extra_prev_tokens_[ichannel][offset]; *extra_extra_and_acoustic_cost_beg = &h_all_tokens_extra_prev_tokens_extra_and_acoustic_cost_[ichannel] [offset]; *nsame = size; } } void CudaDecoder::ConsiderTokenForLattice( ChannelId ichannel, int32 iprev, int32 total_ntokens, TokenId token_idx, OutputLatticeState fst_lattice_start, InfoToken *tok_beg, float2 *extra_extra_and_acoustic_cost_beg, CostType token_extra_cost, TokenId list_prev_token_idx, int32 list_arc_idx, InfoToken *list_prev_token, CostType *this_arc_prev_token_extra_cost, CostType *acoustic_cost, OutputLatticeState *lattice_src_state, bool *keep_arc, bool *dbg_found_zero) { CostType arc_extra_cost; if (extra_extra_and_acoustic_cost_beg) { float2 both = extra_extra_and_acoustic_cost_beg[iprev]; arc_extra_cost = both.x; *acoustic_cost = both.y; } else { // If we have only one token for that (iframe,fst_state), // Its arc has an extra_cost of zero (it's the only way to // get to that state, so it's the best) arc_extra_cost = 0.0f; *acoustic_cost = h_all_tokens_acoustic_cost_[ichannel][token_idx]; } // If we use that arc to go to prev_token, prev_token will have the // following extra cost *this_arc_prev_token_extra_cost = token_extra_cost + arc_extra_cost; // We need at least one arc_extra_cost of zero for each (iframe, // fst_state) // The only use for that boolean is in a KALDI_ASSERT, // because if something went wrong in the kernels it's not likely // that this property will be verified out of luck *dbg_found_zero |= (arc_extra_cost == 0.0f); *list_prev_token = h_all_tokens_info_[ichannel][list_prev_token_idx]; // Source of the arc currently considered *lattice_src_state = (list_prev_token_idx != 0) ? GetLatticeStateInternalId(total_ntokens, list_prev_token_idx, *list_prev_token) : fst_lattice_start; // We only keep the arc if, when using that arc, we can end up // at the last frame with a cost not worse than (best+lattice_beam) // this_arc_prev_token_extra_cost contains the accumulated sums // of extra costs (through the cheapest possible way) to the last // frame *keep_arc = (*this_arc_prev_token_extra_cost < lattice_beam_); } void CudaDecoder::SwapPrevAndCurrLatticeMap( int32 iframe, bool dbg_found_best_path, std::vector<std::pair<TokenId, InfoToken>> *q_curr_frame_todo, std::vector<std::pair<TokenId, InfoToken>> *q_prev_frame_todo, std::unordered_map<LatticeStateInternalId, RawLatticeState> *curr_f_raw_lattice_state, std::unordered_map<LatticeStateInternalId, RawLatticeState> *prev_f_raw_lattice_state, std::unordered_set<int32> *f_arc_idx_added) { q_prev_frame_todo->swap(*q_curr_frame_todo); q_prev_frame_todo->clear(); prev_f_raw_lattice_state->swap(*curr_f_raw_lattice_state); prev_f_raw_lattice_state->clear(); f_arc_idx_added->clear(); KALDI_ASSERT(q_prev_frame_todo->empty()); if (iframe > 0) { KALDI_ASSERT(!q_curr_frame_todo->empty()); if (!dbg_found_best_path) { KALDI_WARN << "Warning didn't find exact best path in GetRawLattice"; } } } void CudaDecoder::WaitForH2HCopies() { std::unique_lock<std::mutex> lk(n_h2h_task_not_done_mutex_); h2h_done_.wait(lk, [this] { return (n_h2h_task_not_done_ == 0); }); } void CudaDecoder::WaitForInitDecodingH2HCopies() { std::unique_lock<std::mutex> lk(n_init_decoding_h2h_task_not_done_mutex_); init_decoding_h2h_done_.wait( lk, [this] { return (n_init_decoding_h2h_task_not_done_ == 0); }); } void CudaDecoder::PrepareForGetRawLattice( const std::vector<ChannelId> &channels, bool use_final_probs) { GetBestCost(channels, use_final_probs, &argmins_, &list_finals_token_idx_and_cost_, &has_reached_final_); for (LaneId ilane = 0; ilane < channels.size(); ++ilane) { ChannelId ichannel = channels[ilane]; std::lock_guard<std::mutex> channel_lk(channel_lock_[ichannel]); h_all_argmin_cost_[ichannel] = argmins_[ilane]; h_all_final_tokens_list_[ichannel].swap( list_finals_token_idx_and_cost_[ilane]); h_all_has_reached_final_[ichannel] = has_reached_final_[ilane]; } } void CudaDecoder::ConcurrentGetRawLatticeSingleChannel(const ChannelId ichannel, Lattice *fst_out) { nvtxRangePushA("GetRawLatticeOneChannel"); // Allocating the datastructures that we need // [prev|curr]_f_raw_lattice_state // Used to get information about a lattice state (i.e. a (iframe, fst_state) // pair) // using its LatticeStateInternalId (its ID inside of the decoder) // It gives us the OutputLatticeState (its ID in the output lattice) // alongside with the extra_cost of that state in the lattice // Those maps are used to build the external lattice using what we know // internally // Using one map per frame. We always know to which frame a token belongs. // Using one big map slows everything down std::unordered_map<LatticeStateInternalId, RawLatticeState> prev_f_raw_lattice_state, curr_f_raw_lattice_state; // We want the unicity of each arc_idx for one frame. Important because we // can replay a frame (and possibly add multiple time the same arc) std::unordered_set<int32> f_arc_idx_added; // When backtracking, we read tokens in the current frame (in // q_curr_frame_todo_), // we backtrack the associated arc, and we add the predecessor either to // q_curr_frame_todo_ (non-emitting arc, same frame) // or q_prev_frame_todo_ (emitting arc, source in previous frame) std::vector<std::pair<TokenId, InfoToken>> q_curr_frame_todo; std::vector<std::pair<TokenId, InfoToken>> q_prev_frame_todo; // We need to lock the channel to read argmin TokenId best_cost_idx; { std::lock_guard<std::mutex> channel_lk(channel_lock_[ichannel]); h_all_tokens_info_.shrink_to_fit(); h_all_tokens_acoustic_cost_.shrink_to_fit(); h_all_tokens_extra_prev_tokens_.shrink_to_fit(); h_all_tokens_extra_prev_tokens_extra_and_acoustic_cost_.shrink_to_fit(); best_cost_idx = h_all_argmin_cost_[ichannel].first; } KALDI_ASSERT( "You need to call PrepareForGetRawLattice before " "ConcurrentGetRawLatticeSingleChannel" && best_cost_idx >= 0); const int32 nframes = NumFramesDecoded(ichannel); // Making sure that this token is available for this channel. // We're going to read storage data from this channel. Locking it // If that token in that frame f is available, then all tokens in that frame // f are available WaitForH2HCopies(); std::unique_lock<std::mutex> channel_lk(channel_lock_[ichannel]); // Total number of tokens generated by the utterance on channel ichannel const int32 total_ntokens = h_all_tokens_info_[ichannel].size(); // Preparing output lattice // The start state has to be 0 (cf some asserts somewhere else in Kaldi) // Adding it now fst_out->DeleteStates(); OutputLatticeState fst_lattice_start = fst_out->AddState(); fst_out->SetStart(fst_lattice_start); // Adding the best tokens returned by GetBestCost to the lattice // We also add them to q_curr_frame_todo, and we'll backtrack from there AddFinalTokensToLattice(ichannel, &q_curr_frame_todo, &curr_f_raw_lattice_state, fst_out); // We're now going to backtrack frame by frame // For each frame we're going to process tokens that need to be inserted // into the output lattice // and add their predecessors to the todo list // iframe == -1 contains the start state and the first non emitting tokens. // It is not linked to a real frame for (int32 iframe = nframes - 1; iframe >= -1; --iframe) { // Tokens for the current frame were inserted after this offset in the // token list const int32 curr_frame_offset = (iframe >= 0) ? frame_offsets_[ichannel][iframe] : 0; // bool must_replay_frame // In some cases we can update an extra_cost that has already been used // For instance we process arcs in that order : // 1) a -> b, which updates extra_cost[b] using extra_cost[a] // 2) c -> a, which updates extra-cost[a] (using extra_cost[c]) // because the arcs were not considered in topological order, we need to // run // again the step 1, // to get the correct extra_cost[b] (using the latest extra_cost[a]) // However, we only re-run the step 1 if the value extra_cost[a] has // changed more than extra_cost_min_delta_ bool must_replay_frame; // dbg_found_best_path is used in an useful assert, making sure the best // path is still there for each frame // if something went wrong in the kernels, it's not likely we respect that // property out of luck bool dbg_found_best_path = false; do { must_replay_frame = false; // Reading something to do. We are pushing stuff back in // q_curr_frame_todo while reading it, // so it's important to always read q_curr_frame_todo_.size() directly // not using a queue, because we may need to recompute the frame (if // must_replay_frame is true) for (int32 u = 0; u < q_curr_frame_todo.size(); ++u) { TokenId token_idx; InfoToken token; std::tie(token_idx, token) = q_curr_frame_todo[u]; KALDI_ASSERT(token_idx >= curr_frame_offset); CostType token_extra_cost; StateId to_fst_lattice_state; // Loading the current extra_cost of that token // + its associated state in the lattice GetTokenRawLatticeData(token_idx, token, total_ntokens, &curr_f_raw_lattice_state, &token_extra_cost, &to_fst_lattice_state); dbg_found_best_path |= (token_extra_cost == 0.0f); InfoToken *tok_beg; float2 *extra_extra_and_acoustic_cost_beg; int32 nsamestate; // Getting the list of the tokens linked to the same FST state, in the // same frame // In the GPU decoder a token is linked to a single arc, but we can // generate // multiple token for a same fst_nextstate in the same frame. // In the CPU decoder we would use the forward_links list to store // everything in the same metatoken // GetSameFSTStateTokenList returns the list of tokens linked to the // same FST state than token // (in the current frame) GetSameFSTStateTokenList(ichannel, token, &tok_beg, &extra_extra_and_acoustic_cost_beg, &nsamestate); // dbg_found_zero used for debugging. For each FST state, we have a // token with the // best cost for that FST state // that token has an extra_cost of 0.0f. This is a sanity check bool dbg_found_zero = false; for (int32 iprev = 0; iprev < nsamestate; ++iprev) { InfoToken list_prev_token; CostType acoustic_cost, this_arc_prev_token_extra_cost; bool keep_arc; LatticeStateInternalId src_state_internal_id; InfoToken list_token = tok_beg[iprev]; int32 list_prev_token_idx = list_token.prev_token; int32 list_arc_idx = list_token.arc_idx; ConsiderTokenForLattice( ichannel, iprev, total_ntokens, token_idx, fst_lattice_start, tok_beg, extra_extra_and_acoustic_cost_beg, token_extra_cost, list_prev_token_idx, list_arc_idx, &list_prev_token, &this_arc_prev_token_extra_cost, &acoustic_cost, &src_state_internal_id, &keep_arc, &dbg_found_zero); if (keep_arc) AddArcToLattice(list_arc_idx, list_prev_token_idx, list_prev_token, curr_frame_offset, acoustic_cost, this_arc_prev_token_extra_cost, src_state_internal_id, fst_lattice_start, to_fst_lattice_state, &q_curr_frame_todo, &q_prev_frame_todo, &curr_f_raw_lattice_state, &prev_f_raw_lattice_state, &f_arc_idx_added, fst_out, &must_replay_frame); } KALDI_ASSERT(dbg_found_zero); } if (must_replay_frame) { // We need to replay the frame. Because all states will be read again, // we can reopen them (and they will be closed again when being read // from again) for (auto it = curr_f_raw_lattice_state.begin(); it != curr_f_raw_lattice_state.end(); ++it) { it->second.is_state_closed = false; } } } while (must_replay_frame); // Done processing this frame. Swap the datastructures, move on to // previous frame (we go --iframe) SwapPrevAndCurrLatticeMap(iframe, dbg_found_best_path, &q_curr_frame_todo, &q_prev_frame_todo, &curr_f_raw_lattice_state, &prev_f_raw_lattice_state, &f_arc_idx_added); } nvtxRangePop(); } void CudaDecoder::GetRawLattice(const std::vector<ChannelId> &channels, std::vector<Lattice *> &fst_out_vec, bool use_final_probs) { KALDI_ASSERT(channels.size() == fst_out_vec.size()); // Getting the list of the best costs in the lastest token queue. // all costs within [best;best+lattice_beam] PrepareForGetRawLattice(channels, use_final_probs); for (int32 ilane = 0; ilane < channels.size(); ++ilane) { const ChannelId ichannel = channels[ilane]; Lattice *fst_out = fst_out_vec[ilane]; ConcurrentGetRawLatticeSingleChannel(ichannel, fst_out); } } void CudaDecoder::SetChannelsInKernelParams( const std::vector<ChannelId> &channels) { KALDI_ASSERT(channels.size() <= nchannels_); KALDI_ASSERT(channels.size() <= nlanes_); for (LaneId lane_id = 0; lane_id < channels.size(); ++lane_id) channel_to_compute_[lane_id] = channels[lane_id]; h_kernel_params_->nlanes_used = channels.size(); nlanes_used_ = channels.size(); } void CudaDecoder::ResetChannelsInKernelParams() { h_kernel_params_->nlanes_used = 0; nlanes_used_ = 0; } int32 CudaDecoder::NumFramesDecoded(ChannelId ichannel) const { KALDI_ASSERT(ichannel < nchannels_); return num_frames_decoded_[ichannel]; } void CudaDecoder::CheckStaticAsserts() { // Checking if all constants look ok // We need that because we need to be able to do the scan in one pass in the // kernel // update_beam_using_histogram_kernel KALDI_ASSERT(KALDI_CUDA_DECODER_HISTO_NBINS < KALDI_CUDA_DECODER_1D_BLOCK); KALDI_ASSERT(KALDI_CUDA_DECODER_NONEM_LT_MAX_NARCS > 0); } void CudaDecoder::LaunchH2HCopies() { // Each H2H copy counter n_acoustic_h2h_copies_todo_.store(nlanes_used_ - 1); n_infotoken_h2h_copies_todo_.store(nlanes_used_ - 1); n_extra_prev_tokens_h2h_copies_todo_.store(nlanes_used_ - 1); { std::lock_guard<std::mutex> n_h2h_not_done_lk(n_h2h_task_not_done_mutex_); n_h2h_task_not_done_ += thread_pool_ ? n_threads_used_ : 1; } { std::lock_guard<std::mutex> n_h2h_todo_lk(n_h2h_main_task_todo_mutex_); n_h2h_main_task_todo_ = thread_pool_ ? n_threads_used_ : 1; } // Either do the copy locally or send it to the threadpool if (thread_pool_) { n_h2h_main_task_todo_cv_.notify_all(); } else { ComputeH2HCopies(); } } void CudaDecoder::ComputeH2HCopiesCPUWorker() { // Run by a dedicated CPU thread while (h2h_threads_running_) { ComputeH2HCopies(); } } void CudaDecoder::ComputeH2HCopies() { // Waiting for either something to do or the instruction to stop the threads { std::unique_lock<std::mutex> n_h2h_lk(n_h2h_main_task_todo_mutex_); n_h2h_main_task_todo_cv_.wait(n_h2h_lk, [this] { return !h2h_threads_running_ || (n_h2h_main_task_todo_ > 0); }); --n_h2h_main_task_todo_; } // If we are done, stop the wait and return now. ComputeH2HCopiesCPUWorker // will also return, // stopping the thread if (!h2h_threads_running_) return; // Waiting for the D2H copies. This is threadsafe // Step 1: acoustic costs cudaEventSynchronize(d2h_copy_acoustic_evt_); int32 ilane; while ((ilane = n_acoustic_h2h_copies_todo_.fetch_sub(1)) >= 0) { int32 ichannel = lanes2channels_todo_[ilane]; // Lock Channel std::lock_guard<std::mutex> channel_lk(channel_lock_[ichannel]); MoveConcatenatedCopyToVector( ilane, ichannel, h_emitting_main_q_end_lane_offsets_, h_acoustic_cost_concat_, &h_all_tokens_acoustic_cost_); // Adding 0.0f acoustic_costs for non-emittings int32 main_q_end = h_main_q_end_lane_offsets_[ilane + 1] - h_main_q_end_lane_offsets_[ilane]; int32 ntokens_emitting = h_emitting_main_q_end_lane_offsets_[ilane + 1] - h_emitting_main_q_end_lane_offsets_[ilane]; int32 ntokens_nonemitting = main_q_end - ntokens_emitting; auto &vec = h_all_tokens_acoustic_cost_[ichannel]; vec.insert(vec.end(), ntokens_nonemitting, 0.0f); } // Step 2: infotoken cudaEventSynchronize(d2h_copy_infotoken_evt_); while ((ilane = n_infotoken_h2h_copies_todo_.fetch_sub(1)) >= 0) { int32 ichannel = lanes2channels_todo_[ilane]; // Lock Channel std::lock_guard<std::mutex> channel_lk(channel_lock_[ichannel]); MoveConcatenatedCopyToVector(ilane, ichannel, h_main_q_end_lane_offsets_, h_infotoken_concat_, &h_all_tokens_info_); } // Step 3: extra prev tokens cudaEventSynchronize(d2h_copy_extra_prev_tokens_evt_); while ((ilane = n_extra_prev_tokens_h2h_copies_todo_.fetch_sub(1)) >= 0) { int32 ichannel = lanes2channels_todo_[ilane]; // Lock Channel std::lock_guard<std::mutex> channel_lk(channel_lock_[ichannel]); MoveConcatenatedCopyToVector( ilane, ichannel, h_n_extra_prev_tokens_lane_offsets_, h_extra_prev_tokens_concat_, &h_all_tokens_extra_prev_tokens_); MoveConcatenatedCopyToVector( ilane, ichannel, h_n_extra_prev_tokens_lane_offsets_, h_extra_and_acoustic_cost_concat_, &h_all_tokens_extra_prev_tokens_extra_and_acoustic_cost_); } // If we're the last cpu thread to complete the current tasks, notify the main // thread bool all_done; { std::lock_guard<std::mutex> lk_not_done(n_h2h_task_not_done_mutex_); all_done = (--n_h2h_task_not_done_ == 0); } if (all_done) { h2h_done_.notify_all(); } } void CudaDecoder::SetThreadPoolAndStartCPUWorkers(ThreadPool *thread_pool, int32 nworkers) { KALDI_ASSERT(nworkers > 0); n_threads_used_ = nworkers; thread_pool_ = thread_pool; for (int32 i = 0; i < nworkers; ++i) cpu_dedicated_threads_.emplace_back(&CudaDecoder::ComputeH2HCopiesCPUWorker, this); } } // end namespace cuda_decoder } // end namespace kaldi #endif // HAVE_CUDA == 1 |