Blame view
src/cudamatrix/cu-block-matrix-test.cc
6.39 KB
8dcb6dfcb first commit |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 |
// cudamatrix/cu-block-matrix-test.cc // Copyright 2013 Johns Hopkins University (author: Daniel Povey) // See ../../COPYING for clarification regarding multiple authors // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY // KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED // WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE, // MERCHANTABLITY OR NON-INFRINGEMENT. // See the Apache 2 License for the specific language governing permissions and // limitations under the License. #include <iostream> #include <vector> #include <cstdlib> #include "base/kaldi-common.h" #include "util/common-utils.h" #include "cudamatrix/cu-matrix-lib.h" using namespace kaldi; namespace kaldi { template<typename Real> static bool ApproxEqual(const CuBlockMatrix<Real> &A, const CuBlockMatrix<Real> &B, float tol = 0.001) { CuMatrix<Real> Acopy(A), Bcopy(B); return Acopy.ApproxEqual(Bcopy, tol); } template<class Real> static void UnitTestCuBlockMatrixIO() { for (int32 i = 0; i < 10; i++) { int32 num_blocks = Rand() % 5; std::vector<CuMatrix<Real> > data(num_blocks); for (int32 b = 0; b < num_blocks; b++) { int32 dimM = 100 + Rand() % 255, dimN = 10 + Rand() % 20; if (b % 2 == 0) std::swap(dimM, dimN); data[b].Resize(dimM, dimN); data[b].SetRandn(); } CuBlockMatrix<Real> B(data); std::ostringstream os; bool binary = (i % 4 < 2); B.Write(os, binary); CuBlockMatrix<Real> B2; std::istringstream is(os.str()); B2.Read(is, binary); CuMatrix<Real> mat(B), mat2(B2); AssertEqual(mat, mat2); if (!data.empty()) KALDI_ASSERT(mat.Sum() != 0.0); } } template<class Real> static void UnitTestCuBlockMatrixAddMatBlock() { for (int32 i = 0; i < 20; i++) { int32 num_blocks = Rand() % 5; std::vector<CuMatrix<Real> > data(num_blocks); for (int32 b = 0; b < num_blocks; b++) { int32 dimM = 100 + Rand() % 255, dimN = 10 + Rand() % 20; // early failures will have small dim for easier eyeballing. if (b % 2 == 0) std::swap(dimM, dimN); data[b].Resize(dimM, dimN); data[b].SetRandn(); } CuBlockMatrix<Real> B(data); int32 B_num_rows = B.NumRows(), B_num_cols = B.NumCols(); // will do X += A B MatrixTransposeType transB = (i % 2 == 1 ? kTrans : kNoTrans), transA = (i % 3 == 1 ? kTrans : kNoTrans); if (transB == kTrans) std::swap(B_num_rows, B_num_cols); int32 X_num_rows = 100 + Rand() % 255, X_num_cols = B_num_cols, A_num_rows = X_num_rows, A_num_cols = B_num_rows; if (data.size() == 0) { X_num_rows = 0; A_num_rows = 0; } if (transA == kTrans) std::swap(A_num_rows, A_num_cols); Real alpha = 2.0, beta = -1.0; CuMatrix<Real> X(X_num_rows, X_num_cols); X.SetRandn(); CuMatrix<Real> A(A_num_rows, A_num_cols); A.SetRandn(); CuMatrix<Real> Xcopy(X), Bcopy(B), Xorig(X), Aorig(A); Xcopy.AddMatMat(alpha, A, transA, Bcopy, transB, beta); X.AddMatBlock(alpha, A, transA, B, transB, beta); AssertEqual(X, Xcopy); } } template<class Real> static void UnitTestCuBlockMatrixAddMatMat() { for (int32 i = 0; i < 20; i++) { int32 num_blocks = Rand() % 5 + 1; std::vector<CuMatrix<Real> > data(num_blocks); for (int32 b = 0; b < num_blocks; b++) { int32 dimM = 100 + Rand() % 255, dimN = 10 + Rand() % 20; if (i == 0) { dimM = 1; dimN = 1; } // early failures will have small dim for easier eyeballing. if (b % 2 == 0) std::swap(dimM, dimN); data[b].Resize(dimM, dimN); KALDI_LOG << "dimM " << dimM << ", dimN " << dimN << ", stride " << data[b].Stride(); data[b].SetRandn(); } CuBlockMatrix<Real> B(data); int32 B_num_rows = B.NumRows(), B_num_cols = B.NumCols(); // will do B += C D int32 C_num_rows = B_num_rows, C_num_cols = 100 + Rand() % 255; if (C_num_rows == 0) C_num_cols = 0; int32 D_num_rows = C_num_cols, D_num_cols = B_num_cols; MatrixTransposeType transC = (i % 2 == 1 ? kTrans : kNoTrans), transD = (i % 3 == 1 ? kTrans : kNoTrans); if (transC == kTrans) std::swap(C_num_rows, C_num_cols); if (transD == kTrans) std::swap(D_num_rows, D_num_cols); CuMatrix<Real> C(C_num_rows, C_num_cols), D(D_num_rows, D_num_cols); C.SetRandn(); D.SetRandn(); CuMatrix<Real> Bmat(B); Real alpha = 2.0, beta = -1.0; CuBlockMatrix<Real> Bcopy(B); B.AddMatMat(alpha, C, transC, D, transD, beta); Bmat.AddMatMat(alpha, C, transC, D, transD, beta); // Now check that the block-structured part of Bmat is the // same as B. Bcopy.CopyFromMat(Bmat); // copy block-structured part from Bmat to Bcopy. if (!ApproxEqual(B, Bcopy)) { KALDI_WARN << "CuBlockMatrixTest failure, please report to maintainers: Bcopy = " << Bcopy << ", B = " << B << ", C = " << C << ", D = " << D << ", Bmat = " << B << " transD = " << transD << ", transC = " << transC; KALDI_ERR << "Please give this log to the maintainers."; } KALDI_ASSERT(Bmat.Sum() != 0 || B_num_rows == 0); } } template<typename Real> void CuBlockMatrixUnitTest() { UnitTestCuBlockMatrixIO<Real>(); UnitTestCuBlockMatrixAddMatBlock<Real>(); UnitTestCuBlockMatrixAddMatMat<Real>(); } } // namespace kaldi int main() { SetVerboseLevel(1); int32 loop = 0; #if HAVE_CUDA == 1 for (; loop < 2; loop++) { CuDevice::Instantiate().SetDebugStrideMode(true); if (loop == 0) CuDevice::Instantiate().SelectGpuId("no"); // -1 means no GPU else CuDevice::Instantiate().SelectGpuId("yes"); // -2 .. automatic selection #endif kaldi::CuBlockMatrixUnitTest<float>(); #if HAVE_CUDA == 1 if (CuDevice::Instantiate().DoublePrecisionSupported()) { kaldi::CuBlockMatrixUnitTest<double>(); } else { KALDI_WARN << "Double precision not supported"; } #else kaldi::CuBlockMatrixUnitTest<double>(); #endif if (loop == 0) KALDI_LOG << "Tests without GPU use succeeded."; else KALDI_LOG << "Tests with GPU use (if available) succeeded."; #if HAVE_CUDA == 1 } CuDevice::Instantiate().PrintProfile(); #endif return 0; } |