Blame view
src/cudamatrix/cu-common.cc
5.78 KB
8dcb6dfcb first commit |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 |
// cudamatrix/cu-common.cc // Copyright 2013 Karel Vesely // 2015 Johns Hopkins University (author: Daniel Povey) // See ../../COPYING for clarification regarding multiple authors // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY // KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED // WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE, // MERCHANTABLITY OR NON-INFRINGEMENT. // See the Apache 2 License for the specific language governing permissions and // limitations under the License. #ifndef KALDI_CUDAMATRIX_COMMON_H_ #define KALDI_CUDAMATRIX_COMMON_H_ // This file contains some #includes, forward declarations // and typedefs that are needed by all the main header // files in this directory. #include <mutex> #include "base/kaldi-common.h" #include "matrix/kaldi-blas.h" #include "cudamatrix/cu-device.h" #include "cudamatrix/cu-common.h" #include "cudamatrix/cu-matrixdim.h" namespace kaldi { #if HAVE_CUDA == 1 cublasOperation_t KaldiTransToCuTrans(MatrixTransposeType kaldi_trans) { cublasOperation_t cublas_trans; if (kaldi_trans == kNoTrans) cublas_trans = CUBLAS_OP_N; else if (kaldi_trans == kTrans) cublas_trans = CUBLAS_OP_T; else cublas_trans = CUBLAS_OP_C; return cublas_trans; } void GetBlockSizesForSimpleMatrixOperation(int32 num_rows, int32 num_cols, dim3 *dimGrid, dim3 *dimBlock) { KALDI_ASSERT(num_rows > 0 && num_cols > 0); int32 col_blocksize = 64, row_blocksize = 4; while (col_blocksize > 1 && (num_cols + (num_cols / 2) <= col_blocksize || num_rows > 65535 * row_blocksize)) { col_blocksize /= 2; row_blocksize *= 2; } dimBlock->x = col_blocksize; dimBlock->y = row_blocksize; dimBlock->z = 1; dimGrid->x = n_blocks(num_cols, col_blocksize); dimGrid->y = n_blocks(num_rows, row_blocksize); KALDI_ASSERT(dimGrid->y <= 65535 && "Matrix has too many rows to process"); dimGrid->z = 1; } const char* cublasGetStatusString(cublasStatus_t status) { switch(status) { case CUBLAS_STATUS_SUCCESS: return "CUBLAS_STATUS_SUCCESS"; case CUBLAS_STATUS_NOT_INITIALIZED: return "CUBLAS_STATUS_NOT_INITIALIZED"; case CUBLAS_STATUS_ALLOC_FAILED: return "CUBLAS_STATUS_ALLOC_FAILED"; case CUBLAS_STATUS_INVALID_VALUE: return "CUBLAS_STATUS_INVALID_VALUE"; case CUBLAS_STATUS_ARCH_MISMATCH: return "CUBLAS_STATUS_ARCH_MISMATCH"; case CUBLAS_STATUS_MAPPING_ERROR: return "CUBLAS_STATUS_MAPPING_ERROR"; case CUBLAS_STATUS_EXECUTION_FAILED: return "CUBLAS_STATUS_EXECUTION_FAILED"; case CUBLAS_STATUS_INTERNAL_ERROR: return "CUBLAS_STATUS_INTERNAL_ERROR"; case CUBLAS_STATUS_NOT_SUPPORTED: return "CUBLAS_STATUS_NOT_SUPPORTED"; case CUBLAS_STATUS_LICENSE_ERROR: return "CUBLAS_STATUS_LICENSE_ERROR"; } return "CUBLAS_STATUS_UNKNOWN_ERROR"; } const char* cusparseGetStatusString(cusparseStatus_t status) { // detail info come from http://docs.nvidia.com/cuda/cusparse/index.html#cusparsestatust switch(status) { case CUSPARSE_STATUS_SUCCESS: return "CUSPARSE_STATUS_SUCCESS"; case CUSPARSE_STATUS_NOT_INITIALIZED: return "CUSPARSE_STATUS_NOT_INITIALIZED"; case CUSPARSE_STATUS_ALLOC_FAILED: return "CUSPARSE_STATUS_ALLOC_FAILED"; case CUSPARSE_STATUS_INVALID_VALUE: return "CUSPARSE_STATUS_INVALID_VALUE"; case CUSPARSE_STATUS_ARCH_MISMATCH: return "CUSPARSE_STATUS_ARCH_MISMATCH"; case CUSPARSE_STATUS_MAPPING_ERROR: return "CUSPARSE_STATUS_MAPPING_ERROR"; case CUSPARSE_STATUS_EXECUTION_FAILED: return "CUSPARSE_STATUS_EXECUTION_FAILED"; case CUSPARSE_STATUS_INTERNAL_ERROR: return "CUSPARSE_STATUS_INTERNAL_ERROR"; case CUSPARSE_STATUS_MATRIX_TYPE_NOT_SUPPORTED: return "CUSPARSE_STATUS_MATRIX_TYPE_NOT_SUPPORTED"; case CUSPARSE_STATUS_ZERO_PIVOT: return "CUSPARSE_STATUS_ZERO_PIVOT"; } return "CUSPARSE_STATUS_UNKNOWN_ERROR"; } const char* curandGetStatusString(curandStatus_t status) { // detail info come from http://docs.nvidia.com/cuda/curand/group__HOST.html switch(status) { case CURAND_STATUS_SUCCESS: return "CURAND_STATUS_SUCCESS"; case CURAND_STATUS_VERSION_MISMATCH: return "CURAND_STATUS_VERSION_MISMATCH"; case CURAND_STATUS_NOT_INITIALIZED: return "CURAND_STATUS_NOT_INITIALIZED"; case CURAND_STATUS_ALLOCATION_FAILED: return "CURAND_STATUS_ALLOCATION_FAILED"; case CURAND_STATUS_TYPE_ERROR: return "CURAND_STATUS_TYPE_ERROR"; case CURAND_STATUS_OUT_OF_RANGE: return "CURAND_STATUS_OUT_OF_RANGE"; case CURAND_STATUS_LENGTH_NOT_MULTIPLE: return "CURAND_STATUS_LENGTH_NOT_MULTIPLE"; case CURAND_STATUS_DOUBLE_PRECISION_REQUIRED: return "CURAND_STATUS_DOUBLE_PRECISION_REQUIRED"; case CURAND_STATUS_LAUNCH_FAILURE: return "CURAND_STATUS_LAUNCH_FAILURE"; case CURAND_STATUS_PREEXISTING_FAILURE: return "CURAND_STATUS_PREEXISTING_FAILURE"; case CURAND_STATUS_INITIALIZATION_FAILED: return "CURAND_STATUS_INITIALIZATION_FAILED"; case CURAND_STATUS_ARCH_MISMATCH: return "CURAND_STATUS_ARCH_MISMATCH"; case CURAND_STATUS_INTERNAL_ERROR: return "CURAND_STATUS_INTERNAL_ERROR"; } return "CURAND_STATUS_UNKNOWN_ERROR"; } #endif } // namespace #endif // KALDI_CUDAMATRIX_COMMON_H_ |