Blame view
src/cudamatrix/cu-device-test.cc
3.37 KB
8dcb6dfcb first commit |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 |
// cudamatrix/cu-device-test.cc // Copyright 2015 Johns Hopkins University (author: Daniel Povey) // See ../../COPYING for clarification regarding multiple authors // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY // KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED // WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE, // MERCHANTABLITY OR NON-INFRINGEMENT. // See the Apache 2 License for the specific language governing permissions and // limitations under the License. #include <iostream> #include <vector> #include <cstdlib> #include "base/kaldi-common.h" #include "util/common-utils.h" #include "cudamatrix/cu-matrix.h" #include "cudamatrix/cu-vector.h" using namespace kaldi; namespace kaldi { template<typename Real> std::string NameOf() { return (sizeof(Real) == 8 ? "<double>" : "<float>"); } template<typename Real> void TestCuMatrixResize(int32 size_multiple) { int32 num_matrices = 256; BaseFloat time_in_secs = 0.2; std::vector<std::pair<int32, int32> > sizes(num_matrices); for (int32 i = 0; i < num_matrices; i++) { int32 num_rows = RandInt(1, 10); num_rows *= num_rows; num_rows *= size_multiple; int32 num_cols = RandInt(1, 10); num_cols *= num_cols; num_cols *= size_multiple; sizes[i].first = num_rows; sizes[i].second = num_rows; } std::vector<CuMatrix<BaseFloat> > matrices(num_matrices); Timer tim; size_t num_floats_processed = 0; for (;tim.Elapsed() < time_in_secs; ) { int32 matrix = RandInt(0, num_matrices - 1); if (matrices[matrix].NumRows() == 0) { int32 num_rows = sizes[matrix].first, num_cols = sizes[matrix].second; matrices[matrix].Resize(num_rows, num_cols, kUndefined); num_floats_processed += num_rows * num_cols; } else { matrices[matrix].Resize(0, 0); } } BaseFloat gflops = num_floats_processed / (tim.Elapsed() * 1.0e+09); KALDI_LOG << "For CuMatrix::Resize" << NameOf<Real>() << ", for size_multiple = " << size_multiple << ", speed was " << gflops << " gigaflops."; } template <typename Real> void CudaMatrixResizeTest() { std::vector<int32> sizes; sizes.push_back(1); sizes.push_back(2); sizes.push_back(4); sizes.push_back(8); sizes.push_back(16); //sizes.push_back(24); //sizes.push_back(32); //sizes.push_back(40); int32 ns = sizes.size(); for (int32 s = 0; s < ns; s++) TestCuMatrixResize<Real>(sizes[s]); } } // namespace kaldi int main() { SetVerboseLevel(1); #if HAVE_CUDA == 1 for (int32 loop = 0; loop < 2; loop++) { CuDevice::Instantiate().SetDebugStrideMode(true); if (loop == 0) CuDevice::Instantiate().SelectGpuId("no"); else CuDevice::Instantiate().SelectGpuId("yes"); #endif kaldi::CudaMatrixResizeTest<float>(); #if HAVE_CUDA == 1 if (CuDevice::Instantiate().DoublePrecisionSupported()) { kaldi::CudaMatrixResizeTest<double>(); } else { KALDI_WARN << "Double precision not supported"; } #else kaldi::CudaMatrixResizeTest<double>(); #endif #if HAVE_CUDA == 1 } CuDevice::Instantiate().PrintProfile(); #endif KALDI_LOG << "Tests succeeded."; } |