Blame view
src/cudamatrix/cu-matrix.h
39.2 KB
8dcb6dfcb first commit |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 |
// cudamatrix/cu-matrix.h // Copyright 2009-2012 Karel Vesely // 2013 Johns Hopkins University (author: Daniel Povey) // 2013 Hainan Xu // 2013 Xiaohui Zhang // 2013-2015 Guoguo Chen // 2017 Shiyin Kang // 2019 Yiwen Shao // See ../../COPYING for clarification regarding multiple authors // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY // KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED // WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE, // MERCHANTABLITY OR NON-INFRINGEMENT. // See the Apache 2 License for the specific language governing permissions and // limitations under the License. #ifndef KALDI_CUDAMATRIX_CU_MATRIX_H_ #define KALDI_CUDAMATRIX_CU_MATRIX_H_ #include <sstream> #include <vector> #include "cudamatrix/cu-matrixdim.h" #include "cudamatrix/cu-common.h" #include "cudamatrix/cu-value.h" #include "matrix/matrix-common.h" #include "matrix/kaldi-matrix.h" #include "cudamatrix/cu-array.h" #include "cudamatrix/cu-math.h" #include "cudamatrix/cu-rand.h" #include "cudamatrix/cu-sparse-matrix.h" namespace kaldi { template<typename Real> Real TraceMatMat(const CuMatrixBase<Real> &A, const CuMatrixBase<Real> &B, MatrixTransposeType trans = kNoTrans); /// Does multiple matrix multiplications, executing them in parallel using /// cuBLAS's gemmBatched if we are using a GPU. Vectors A, B and C must have /// the same length; for each i, this function executes the matrix operation /// C[i] = alpha * A[i](^T)*B[i](^T) + beta * C[i]. template<typename Real> void AddMatMatBatched(const Real alpha, std::vector<CuSubMatrix<Real>* > &C, const std::vector<CuSubMatrix<Real>* > &A, MatrixTransposeType transA, const std::vector<CuSubMatrix<Real>* > &B, MatrixTransposeType transB, const Real beta); /** * Matrix for CUDA computing. * Does the computation on the CUDA card when CUDA is compiled in and * we have a suitable GPU (CuDevice::Instantiate().Enabled() == true); * otherwise, does it on the CPU. */ /* template<typename Real> struct MatrixElement { int row; int column; Real weight; }; // */ template<typename Real> class CuMatrixBase { public: friend class CuMatrixBase<float>; friend class CuMatrixBase<double>; friend class CuVectorBase<float>; friend class CuVectorBase<double>; friend class VectorBase<Real>; friend class CuSpMatrix<Real>; friend class CuTpMatrix<float>; friend class CuTpMatrix<double>; friend class CuVectorBase<Real>; friend class CuSubMatrix<Real>; friend class CuRand<Real>; friend class CuSubVector<Real>; friend class CuBlockMatrix<Real>; friend class CuSparseMatrix<float>; friend class CuSparseMatrix<double>; friend class CuSparseMatrix<Real>; /// Copies column r from column indexes[r] of src. /// As a special case, if indexes[i] == -1, sets column i to zero /// indexes.size() must equal this->NumCols(), /// and src.NumRows() must equal this.NumRows() void CopyCols(const CuMatrixBase<Real> &src, const CuArrayBase<MatrixIndexT> &indexes); /// Add column indices[r] of src to column r. /// As a special case, if indexes[i] == -1, skip column i /// indices.size() must equal this->NumCols(), /// and src.NumRows() must equal this.NumRows() void AddCols(const CuMatrixBase<Real> &src, const CuArrayBase<MatrixIndexT> &indices); /// Copies row r from row indexes[r] of src. /// As a special case, if indexes[i] < 0, sets row i to zero. /// src.NumCols() must equal this.NumCols() void CopyRows(const CuMatrixBase<Real> &src, const CuArrayBase<MatrixIndexT> &indexes); /// Copies row r of this matrix from an array of floats at the location given /// by src[r], where src[r] is assumed to be obtained from the RowData() /// function of another CuMatrix, or from CuVector::Data() (the point is: the /// data it points to should be on the GPU if we're using a GPU, and on a CPU /// otherwise). src.size() must equal this.NumRows(), and if any src[r] is /// NULL then this.Row(r) will be set to zero. void CopyRows(const CuArrayBase<const Real*> &src); /// For each row r of this matrix, copies it to the array of floats at the /// location given by dst[r], where dst[r] is assumed to be obtained from the /// RowData() function of another CuMatrix, or from CuVector::Data() (i.e. it /// should point to memory on the GPU if we're using a GPU, or on the CPU /// otherwise). If dst[r] is NULL, does not copy anywhere. Requires that /// none of the memory regions pointed to by the pointers in "dst" overlap /// (e.g. none of the pointers should be the same). void CopyToRows(const CuArrayBase<Real*> &dst) const; /// Does for each row r, this.Row(r) += alpha * src.row(indexes[r]). /// If indexes[r] < 0, does not add anything. /// src.NumCols() must equal this.NumCols() void AddRows(Real alpha, const CuMatrixBase<Real> &src, const CuArrayBase<MatrixIndexT> &indexes); /// Does for each row r, this.Row(r) *= alpha * src.row(indexes[r]), /// where '*=' is elementwise multiplication. /// If indexes[r] < 0, does not add anything. /// src.NumCols() must equal this.NumCols() void MulRows(const CuMatrixBase<Real> &src, const CuArrayBase<MatrixIndexT> &indexes); /// Does for each row r, this.Row(r) += alpha * src[r], /// treating src[r] as the beginning of a region of memory representing /// a vector of floats, of the same length as this.NumCols(). void AddRows(Real alpha, const CuArrayBase<const Real*> &src); /// For each row i of *this, adds this->Row(i) to /// dst->Row(indexes(i)) if indexes(i) >= 0, else do nothing. /// Requires that all the indexes[i] that are >= 0 /// be distinct, otherwise the behavior is undefined. void AddToRows(Real alpha, const CuArrayBase<MatrixIndexT> &indexes, CuMatrixBase<Real> *dst) const; /// For each row r of this matrix, adds it (times alpha) to the array of /// floats at the location given by dst[r], where dst[r] is assumed to be /// obtained from the RowData() function of another CuMatrix, or from /// CuVector::Data() (i.e. it should point to memory on the GPU if we're using /// a GPU, or on the CPU otherwise). If dst[r] is NULL, does not do anything /// for that row. Requires that none of the memory regions pointed to by the /// pointers in "dst" overlap (e.g. none of the pointers should be the same). void AddToRows(Real alpha, const CuArrayBase<Real*> &dst) const; /// For each row r of this and for each column c, sets (*this)(r, c) to the /// sum \sum_j src(r, j), where j ranges from indexes[c].first through /// indexes[c].second - 1. void SumColumnRanges(const CuMatrixBase<Real> &src, const CuArrayBase<Int32Pair> &indexes); /// For each row r of this and for each column c, do /// (*this)(r, c) += \sum_j src(j, c), /// where j ranges from indexes[r].first through indexes[r].second - 1. /// In general indexes must be >= 0 and < src.NumRows(); but to represent an empty range /// you may use the pair (-1, -1) or any pair of numbers (i, j) such that i >= j. void AddRowRanges(const CuMatrixBase<Real> &src, const CuArrayBase<Int32Pair> &indexes); friend Real TraceMatMat<Real>(const CuMatrixBase<Real> &A, const CuMatrixBase<Real> &B, MatrixTransposeType trans); friend Real TraceMatSmat<Real>(const CuMatrixBase<Real> &A, const CuSparseMatrix<Real> &B, MatrixTransposeType trans); friend void AddMatMatBatched<Real>(const Real alpha, std::vector<CuSubMatrix<Real>* > &C, const std::vector<CuSubMatrix<Real>* > &A, MatrixTransposeType transA, const std::vector<CuSubMatrix<Real>* > &B, MatrixTransposeType transB, const Real beta); /// Adds "value" to the diagonal elements of the matrix. The matrix /// *this does not have to be square. void AddToDiag(Real value); /// Dimensions MatrixIndexT NumRows() const { return num_rows_; } MatrixIndexT NumCols() const { return num_cols_; } MatrixIndexT Stride() const { return stride_; } // MatrixDim is a struct containing "rows", "cols" and "stride", // that is an argument of most CUDA kernels. ::MatrixDim Dim() const { ::MatrixDim d = { num_rows_, num_cols_, stride_ }; return d; } Real FrobeniusNorm() const { return sqrt(TraceMatMat(*this, *this, kTrans)); } bool IsUnit(Real tol = 0.001) const; /// True if ((*this)-other).FrobeniusNorm() <= tol * this->FrobeniusNorm() bool ApproxEqual(const CuMatrixBase<Real> &other, float tol = 0.01) const; /// Get size of matrix in bytes MatrixIndexT SizeInBytes() const { return num_rows_*stride_*sizeof(Real); } // Copy functions. These do not resize. template<typename OtherReal> void CopyFromMat(const MatrixBase<OtherReal> &src, MatrixTransposeType trans = kNoTrans); void CopyFromGeneralMat(const GeneralMatrix &src, MatrixTransposeType trans = kNoTrans); void CopyFromMat(const MatrixBase<Real> &src, MatrixTransposeType trans = kNoTrans); void CopyFromSp(const CuSpMatrix<Real> &M); template<typename OtherReal> void CopyFromTp(const CuTpMatrix<OtherReal> &M, MatrixTransposeType trans = kNoTrans); // This function will copy from source rows (start_range, end_range] // if the range is outside of the clamped region then the clamped // row will be replicated across the out of range areas void CopyRangeFromMatClamped(const CuMatrixBase<Real> & src, int32_t start_range, int32_t end_range, int32_t clamp_low, int32_t clamp_high); template<typename OtherReal> void CopyFromMat(const CuMatrixBase<OtherReal> &M, MatrixTransposeType trans = kNoTrans); template<typename OtherReal> void CopyToMat(MatrixBase<OtherReal> *dst, MatrixTransposeType trans = kNoTrans) const; /// This function has two modes of operation. If v.Dim() == NumRows() * /// NumCols(), then treats the vector as a row-by-row concatenation of a /// matrix and copies to *this. /// if v.Dim() == NumCols(), it sets each row of *this to a copy of v. void CopyRowsFromVec(const CuVectorBase<Real> &v); /// Version of CopyRowsFromVec() that takes a CPU-based vector. void CopyRowsFromVec(const VectorBase<Real> &v); /// Copies vector into matrix, column-by-column. /// Note that rv.Dim() must either equal NumRows()*NumCols() or NumRows(); /// this has two modes of operation. void CopyColsFromVec(const CuVectorBase<Real> &v); /// Copy vector into specific column of matrix. void CopyColFromVec(const CuVectorBase<Real> &v, const MatrixIndexT col); /// Set each element to the sigmoid of the corresponding element of "src": /// element by element, x = 1 / (1 + exp(-x)) void Sigmoid(const CuMatrixBase<Real> &src); /// Set each element to the Heaviside function of the corresponding element /// of "src", which we define as the function (x > 0 ? 1.0 : 0.0) [note: /// in general, there are different ways to deal with the situation when x==0.] void Heaviside(const CuMatrixBase<Real> &src); void Exp(const CuMatrixBase<Real> &src); void Log(const CuMatrixBase<Real> &src); void Pow(const CuMatrixBase<Real> &src, Real power); /// Apply power to the absolute value of each element. /// If include_sign is true, the result will be multiplied with /// the sign of the input value. /// If the power is negative and the input to the power is zero, /// The output will be set zero. If include_sign is true, it will /// multiply the result by the sign of the input. void PowAbs(const CuMatrixBase<Real> &src, Real power, bool include_sign=false); void Floor(const CuMatrixBase<Real> &src, Real floor_val); void Ceiling(const CuMatrixBase<Real> &src, Real ceiling_val); /// This is equivalent to running: /// Floor(src, lower_limit); /// Ceiling(src, upper_limit); /// Exp(src) void ExpLimited(const CuMatrixBase<Real> &src, Real lower_limit, Real upper_limit); /// For each element x of the matrix, set it to /// (x < 0 ? exp(x) : x + 1). This function is used /// in our RNNLM training. void ExpSpecial(const CuMatrixBase<Real> &src); /// Softmax nonlinearity /// Y = Softmax(X) : Yij = e^Xij / sum_k(e^Xik), done to each row, /// with attention to avoiding overflow or underflow. /// Supports in-place operation (i.e. this == &src). void SoftMaxPerRow(const CuMatrixBase<Real> &src); /// LogSoftmax nonlinearity /// Y = LogSoftmax(X) : Yij = Xij - log(sum_k(e^Xik)), done to each row, /// with attention to avoiding overflow or underflow. /// Supports in-place operation (i.e. this == &src). void LogSoftMaxPerRow(const CuMatrixBase<Real> &src); /// Apply the function y = log(1 + exp(x)), to each element. /// Note: the derivative of this function is the sigmoid function. /// This is like a soft ReLU. void SoftHinge(const CuMatrixBase<Real> &src); /// Apply the function y(i) = (sum_{j = i*G}^{(i+1)*G-1} x_j ^ (power)) ^ (1 / p) /// where G = x.NumCols() / y.NumCols() must be an integer. /// [note: y corresponds to *this and x to src, so /// src.NumCols() / this->NumCols() must be an integer. void GroupPnorm(const CuMatrixBase<Real> &src, Real pow); /// Differentiate backward through the GroupPnorm function. /// It is a combination of GroupPnormDeriv and MulRowsGroupMat. void DiffGroupPnorm(const CuMatrixBase<Real> &in_value, const CuMatrixBase<Real> &out_value, const CuMatrixBase<Real> &out_deriv, Real power); /// Apply the function y(i) = (max_{j = i*G}^{(i+1)*G-1} x_j /// where G = x.NumCols() / y.NumCols() must be an integer. /// [note: y corresponds to *this and x to src, so /// src.NumCols() / this->NumCols() must be an integer. void GroupMax(const CuMatrixBase<Real> &src); /// Calculate derivatives for the GroupMax function above, where /// "input" is the input to the GroupMax function above (i.e. the "src" variable), /// and "output" is the result of the computation (i.e. the "this" of that function /// call), and *this must have the same dimension as "input". Each element /// of *this will be set to 1 if the corresponding input equals the output of /// the group, and 0 otherwise. The equals the function derivative where it is /// defined (it's not defined where multiple inputs in the group are equal to the output). void GroupMaxDeriv(const CuMatrixBase<Real> &input, const CuMatrixBase<Real> &output); /// Compute the parametric rectified linear unit function; /// element by element, *this = src * (src > 0 ? alpha : beta) void ParametricRelu(const CuMatrixBase<Real> &src, const CuVectorBase<Real> &alpha, const CuVectorBase<Real> &beta); /// Differentiate backward through the parametric relu function. /// Here the "value" is the Relu input. Does, element-by-element. /// *this = diff * (value > 0 ? alpha : beta) void DiffParametricRelu(const CuMatrixBase<Real> &value, const CuMatrixBase<Real> &diff, const CuVectorBase<Real> &alpha, const CuVectorBase<Real> &beta); /// Compute the hyperbolic tangent (tanh) function; element by element, /// *this = tanh(src). void Tanh(const CuMatrixBase<Real> &src); /// Differentiate backward through the sigmoid function. Here, "value" is the /// sigmoid output. Does, element-by-element, *this = diff * value * (1 - value). void DiffSigmoid(const CuMatrixBase<Real> &value, const CuMatrixBase<Real> &diff); /// Differentiate backward through the tanh function. Here, "value" is the /// tanh output. Does, element-by-element, *this = diff * (1 - value^2). void DiffTanh(const CuMatrixBase<Real> &value, const CuMatrixBase<Real> &diff); /// Differentiate backward through the softmax function. Here, "value" is the /// softmax output. Does, for each row i, /// *this(i) = diff(i) * diag(value(i)) - diff(i) * (value(i)^T * value(i)) /// xxxx(i) is row-vector; '*' and '-' are matrix operations. /// Supports in-place operation, this == &diff. void DiffSoftmaxPerRow(const CuMatrixBase<Real> &value, const CuMatrixBase<Real> &diff); /// Differentiate backward through the log softmax function. /// Here, "out_value" is the log softmax output. Does, for each row i, /// *this(i) = out_deriv(i) - sum(out_deriv(i)) .* exp(out_value(i)) /// xxxx(i) is row-vector. /// Supports in-place operation, this == &out_deriv. void DiffLogSoftmaxPerRow(const CuMatrixBase<Real> &out_value, const CuMatrixBase<Real> &out_deriv); /// Differentiate the block [softmax+cross-entropy] : /// dE/da = posterior_mat - target_mat, /// 'E' is error function, 'a' is activation on softmax input /// /// Interface: /// tgt ... index vector, encodes the matrix of targets /// net_out_or_diff ... before invocation net output, after diff dE/da /// log_post_tgt ... per-frame statistics for cross-entropy computations : /// log(sum_row(posterior_mat .* target_mat)) void DiffXent(const CuArrayBase<int32> &tgt, CuVector<Real> *log_post_tgt); /// This function does sets *this to the Cholesky factor of *this (i.e. the C /// satisfying *this = C C^T), and sets "inv_cholesky" (if supplied) to its /// inverse. *this is treated as a symmetric matrix but only the lower triangle /// is accessed. void Cholesky(CuMatrixBase<Real> *inv_cholesky = NULL); /// Inversion for positive definite symmetric matrices. /// Treats the input as symmetric but only reads the lower triangle. /// The output is symmetric. void SymInvertPosDef(); inline void ApplyPow(Real power) { this -> Pow(*this, power); }; inline void ApplyPowAbs(Real power, bool include_sign=false) { this -> PowAbs(*this, power, include_sign); }; inline void ApplyHeaviside() { this -> Heaviside(*this); }; inline void ApplyFloor(Real floor_val) { this -> Floor(*this, floor_val); }; inline void ApplyCeiling(Real ceiling_val) { this -> Ceiling(*this, ceiling_val); }; inline void ApplyExp() { this -> Exp(*this); }; inline void ApplyExpLimited(Real lower_limit, Real upper_limit) { this -> ExpLimited(*this, lower_limit, upper_limit); }; inline void ApplyExpSpecial() { this -> ExpSpecial(*this); }; inline void ApplySoftMaxPerRow() { this -> SoftMaxPerRow(*this); }; inline void ApplyLogSoftMaxPerRow() { this -> LogSoftMaxPerRow(*this); }; inline void ApplyLog() { this -> Log(*this); }; /// Find the id of the maximal element for each row (resizes the 'id' /// array to the appropriate size). void FindRowMaxId(CuArray<int32> *id) const; /// Math operations, some calling kernels void SetZero(); void Set(Real value); void Add(Real value); /// Zeroes all elements for which col > row. void SetZeroAboveDiag(); void Scale(Real value); /// Multiply two matrices elementwise: C = C .* A void MulElements(const CuMatrixBase<Real> &A); /// Divide two matrices elementwise: C = A ./ A void DivElements(const CuMatrixBase<Real> &A); /// Do, elementwise, *this = max(*this, A). void Max(const CuMatrixBase<Real> &A); /// Do, elementwise, *this = min(*this, A). void Min(const CuMatrixBase<Real> &A); /// scale i'th column by scale[i] void MulColsVec(const CuVectorBase<Real> &scale); /// scale i'th row by scale[i] void MulRowsVec(const CuVectorBase<Real> &scale); /// divide each row into src.NumCols() groups, and then scale i'th row's jth group of elements by src[i, j]. void MulRowsGroupMat(const CuMatrixBase<Real> &src); /// divide i'th row by scale[i] void DivRowsVec(const CuVectorBase<Real> &div); /// invert the matrix by elements. void InvertElements(); /// *this += alpha * A void AddMat(Real alpha, const CuMatrixBase<Real> &A, MatrixTransposeType trans = kNoTrans); /// *this += alpha * A. void AddSmat(Real alpha, const CuSparseMatrix<Real> &A, MatrixTransposeType trans = kNoTrans); /// (*this) = alpha * op(A) * B + beta * (*this), where A is sparse. /// Multiplication of sparse with dense matrix. See also AddMatSmat. /// Note: we recommend, for greatest efficiency, that transA be kNoTrans. /// Use AddMatSmat() for better efficiency, as 2 dense mat transpose ops /// are called in this API. void AddSmatMat(Real alpha, const CuSparseMatrix<Real> &A, MatrixTransposeType transA, const CuMatrixBase<Real> &B, Real beta); /// (*this) = alpha * A * op(B) + beta * (*this), where B is sparse /// and op(B) is either B or trans(B) depending on the 'transB' argument. /// This is multiplication of a dense by a sparse matrix. See also /// AddSmatMat. void AddMatSmat(Real alpha, const CuMatrixBase<Real> &A, const CuSparseMatrix<Real> &B, MatrixTransposeType transB, Real beta); /// This is a rather special purpose function; we might /// generalize it later by adding a transpose-type option. /// It expects 'elements.Dim()' to equal NumRows(), and /// for each elements[i] to be either -1, or /// 0 <= element[i] < NumCols(). /// It adds alpha to each element (*this)(i, elements[i]) /// for 0 <= i < NumRows(). void AddToElements(Real alpha, const CuArrayBase<int32> &elements); /// This function is like AddMat (it does *this += alpha * src), /// except that it supports cases where *this and src have /// different dimension. There are two allowed cases: /// /// (1) *this is larger than src; we do a broadcasting operation. *this must /// have NumRows() == a * src.NumRows() and NumCols() == b * /// src.NumCols() for integer a >= 1, b >= 1. *this will be treated as /// a being made up of of blocks with the same size as src, and to each /// block we'll add alpha * src. This case does not support trans == /// kTrans. /// /// (2) *this is smaller than src; we sum. src.NumRows() must == a * /// this->NumRows(), and src.NumCols() must == b * this->NumCols(), for a /// >= 1, b >= 1. In this case, src will be treated as being made up of /// blocks with the same size as *this, and to *this we will add the /// summation of all of those blocks. void AddMatBlocks(Real alpha, const CuMatrixBase<Real> &A, MatrixTransposeType trans = kNoTrans); /// (for each column c of *this), c = alpha * col + beta * c void AddVecToCols(Real alpha, const CuVectorBase<Real> &col, Real beta = 1.0); /// (for each row r of *this), r = alpha * row + beta * r void AddVecToRows(Real alpha, const CuVectorBase<Real> &row, Real beta = 1.0); /// C = alpha * A(^T)*B(^T) + beta * C void AddMatMat(Real alpha, const CuMatrixBase<Real> &A, MatrixTransposeType transA, const CuMatrixBase<Real> &B, MatrixTransposeType transB, Real beta); /// A = alpha * x * y^T + A . void AddVecVec(Real alpha, const CuVectorBase<Real> &x, const CuVectorBase<Real> &y); /// *this = a * b / c (by element; when c = 0, *this = a) /// *this can be an alias of a, b or c safely and get expected result. void SetMatMatDivMat(const CuMatrixBase<Real> &A, const CuMatrixBase<Real> &B, const CuMatrixBase<Real> &C); /// *this = beta * *this + alpha * M M^T, for symmetric matrices. It only /// updates the lower triangle of *this. It will leave the matrix asymmetric; /// if you need it symmetric as a regular matrix, do CopyLowerToUpper(). void SymAddMat2(const Real alpha, const CuMatrixBase<Real> &M, MatrixTransposeType transA, Real beta); /// This function is like AddMatMat but for where the second argument is of /// type CuBlockMatrix (a block-diagonal matrix of blocks). void AddMatBlock(Real alpha, const CuMatrixBase<Real> &A, MatrixTransposeType transA, const CuBlockMatrix<Real> &B, MatrixTransposeType transB, Real beta); /// *this = beta * *this + alpha * diag(v) * M [or M^T]. /// The same as adding M but scaling each row M_i by v(i). void AddDiagVecMat(const Real alpha, const CuVectorBase<Real> &v, const CuMatrixBase<Real> &M, MatrixTransposeType transM, Real beta = 1.0); // *this = beta * *this + alpha * M * diag(v) [or M^T]. // The same as adding M but scaling each column M_j by v(j). void AddMatDiagVec(const Real alpha, const CuMatrixBase<Real> &M, MatrixTransposeType transM, CuVectorBase<Real> &v, Real beta = 1.0); /// *this = beta * *this + alpha * A .* B (.* element by element multiplication) void AddMatMatElements(const Real alpha, const CuMatrixBase<Real>& A, const CuMatrixBase<Real>& B, const Real beta); /// this <-- beta*this + alpha*A*B void AddMatSp(const Real alpha, const CuMatrixBase<Real> &A, MatrixTransposeType transA, const CuSpMatrix<Real> &B, const Real beta) { CuMatrix<Real> M(B); return AddMatMat(alpha, A, transA, M, kNoTrans, beta); } /// this <-- beta*this + alpha*SpA*B void AddSpMat(const Real alpha, const CuSpMatrix<Real> &A, const CuMatrixBase<Real> &B, MatrixTransposeType transB, const Real beta) { CuMatrix<Real> M(A); return AddMatMat(alpha, M, kNoTrans, B, transB, beta); } /// this <-- beta*this + alpha*A*B. void AddTpMat(const Real alpha, const CuTpMatrix<Real> &A, MatrixTransposeType transA, const CuMatrixBase<Real> &B, MatrixTransposeType transB, const Real beta) { CuMatrix<Real> M(A); return AddMatMat(alpha, M, transA, B, transB, beta); } /// this <-- beta*this + alpha*A*B. void AddMatTp(const Real alpha, const CuMatrixBase<Real> &A, MatrixTransposeType transA, const CuTpMatrix<Real> &B, MatrixTransposeType transB, const Real beta) { CuMatrix<Real> M(B); return AddMatMat(alpha, A, transA, M, transB, beta); } void CopyFromBlock(const CuBlockMatrix<Real> &B, MatrixTransposeType trans = kNoTrans); void CopyLowerToUpper(); void CopyUpperToLower(); inline CuSubMatrix<Real> Range(const MatrixIndexT row_offset, const MatrixIndexT num_rows, const MatrixIndexT col_offset, const MatrixIndexT num_cols) const { return CuSubMatrix<Real>(*this, row_offset, num_rows, col_offset, num_cols); } inline CuSubMatrix<Real> RowRange(const MatrixIndexT row_offset, const MatrixIndexT num_rows) const { return CuSubMatrix<Real>(*this, row_offset, num_rows, 0, num_cols_); } inline CuSubMatrix<Real> ColRange(const MatrixIndexT col_offset, const MatrixIndexT num_cols) const { return CuSubMatrix<Real>(*this, 0, num_rows_, col_offset, num_cols); } inline const CuSubVector<Real> Row(MatrixIndexT i) const { KALDI_ASSERT(static_cast<UnsignedMatrixIndexT>(i) < static_cast<UnsignedMatrixIndexT>(num_rows_)); return CuSubVector<Real>(data_ + (i * stride_), NumCols()); } inline CuSubVector<Real> Row(MatrixIndexT i) { KALDI_ASSERT(static_cast<UnsignedMatrixIndexT>(i) < static_cast<UnsignedMatrixIndexT>(num_rows_)); return CuSubVector<Real>(data_ + (i * stride_), NumCols()); } inline CuValue<Real> operator() (MatrixIndexT r, MatrixIndexT c) { KALDI_PARANOID_ASSERT(static_cast<UnsignedMatrixIndexT>(r) < static_cast<UnsignedMatrixIndexT>(num_rows_) && static_cast<UnsignedMatrixIndexT>(c) < static_cast<UnsignedMatrixIndexT>(num_cols_)); return CuValue<Real>(data_ + r * stride_ + c); } inline Real operator() (MatrixIndexT r, MatrixIndexT c) const { KALDI_PARANOID_ASSERT(static_cast<UnsignedMatrixIndexT>(r) < static_cast<UnsignedMatrixIndexT>(num_rows_) && static_cast<UnsignedMatrixIndexT>(c) < static_cast<UnsignedMatrixIndexT>(num_cols_)); return CuValue<Real>(data_ + r * stride_ + c); // will be casted to Real. } Real Sum() const; Real Max() const; Real Min() const; /// Return the trace. If check_square = true, will crash if matrix is not square. Real Trace(bool check_square = true) const; void SetRandn(); void SetRandUniform(); void Write(std::ostream &os, bool binary) const; // This function, adds a list of MatrixElements (scaled by alpha) to corresponding locations to // (*this). void AddElements(Real alpha, const std::vector<MatrixElement<Real> >& input); // For each i, with indexes[i] = (j, k), does (*this)(j, k) += input[i]. // Requires, but does not check, that the vector of indexes does not contrain // repeated elements, 'input' is the start of an array of length equal to // indexes.Dim(), which is located on GPU memory if we are using the GPU. void AddElements(Real alpha, const CuArrayBase<Int32Pair> &indexes, const Real *input); // This function requires that 'output' is a host array and is allocated with size // of indexes.size(), and for each element of 'indexes' it interprets it as // a (row, column) index into *this, and puts (*this)(row, column) into // the corresponding element of 'output'. void Lookup(const std::vector<Int32Pair> &indexes, Real *output) const; // CUDA version of Lookup, would be called internally by the above function. void Lookup(const CuArrayBase<Int32Pair> &indexes, Real *output) const; // Creates binary mask with per-element equality predicates of *this, mat. // Output stored to 'mask', values : 1.0 = equal, 0.0 = not-equal. void EqualElementMask(const CuMatrixBase<Real> &mat, CuMatrix<Real> *mask) const; /// Get raw row pointer (const). Warning: may return a pointer to GPU memory. Use at /// your own risk. inline const Real* RowData(MatrixIndexT r) const { return data_ + r * stride_; } /// Get raw row pointer. Warning: may return a pointer to GPU memory. Use at /// your own risk. inline Real* RowData(MatrixIndexT r) { return data_ + r * stride_; } /// Return data pointer (const). Warning: may return a pointer to GPU memory. /// Use at your own risk. inline const Real *Data() const { return data_; } /// Return data pointer. Warning: may return a pointer to GPU memory. Use at /// your own risk. inline Real *Data() { return data_; } // The following two functions should only be called if we did not compile // with CUDA or could not get a CUDA card; in that case the contents are // interpreted the same as a regular matrix. DON'T USE THESE UNLESS YOU KNOW // WHAT YOU ARE DOING! inline const MatrixBase<Real> &Mat() const { return *(reinterpret_cast<const MatrixBase<Real>* >(this)); } inline MatrixBase<Real> &Mat() { return *(reinterpret_cast<MatrixBase<Real>* >(this)); } protected: // The constructors are protected to prevent the user creating an instance of // this class (you should create a child class CuMatrix or CuSubMatrix. CuMatrixBase(): data_(NULL), num_cols_(0), num_rows_(0), stride_(0) { } /// This constructor takes the #rows, #cols and stride; it's called from /// the constructor of CuSubMatrix. CuMatrixBase(Real *data, MatrixIndexT num_rows, MatrixIndexT num_cols, MatrixIndexT stride): data_(data), num_cols_(num_cols), num_rows_(num_rows), stride_(stride) { } Real *data_; ///< GPU data pointer (or regular matrix data pointer, ///< if either CUDA was not compiled in or we could not ///< acquire the device). // Note: it might seem a bit backwards that we have the number of columns // first here; it's necessary because we need the data to be laid out the same // as for MatrixBase so the Mat() function call will work. We don't want to // change the layout of MatrixBase at this point, or there will be crashes if // people don't thoroughly recompile. MatrixIndexT num_cols_; MatrixIndexT num_rows_; MatrixIndexT stride_; private: KALDI_DISALLOW_COPY_AND_ASSIGN(CuMatrixBase); }; // class CuMatrixBase /// This class represents a matrix that's stored on the GPU if we have one, /// and in memory if not. template<typename Real> class CuMatrix: public CuMatrixBase<Real> { public: CuMatrix() { } /// Constructor with memory initialisation CuMatrix(MatrixIndexT rows, MatrixIndexT cols, MatrixResizeType resize_type = kSetZero, MatrixStrideType stride_type = kDefaultStride) { Resize(rows, cols, resize_type, stride_type); } // Note: we had to remove the "explicit" keyword due // to problems with STL vectors of CuMatrixBase. CuMatrix(const CuMatrix<Real> &other, MatrixTransposeType trans = kNoTrans); explicit CuMatrix(const CuBlockMatrix<Real> &other, MatrixTransposeType trans = kNoTrans); explicit CuMatrix(const CuMatrixBase<Real> &other, MatrixTransposeType trans = kNoTrans); template<typename OtherReal> explicit CuMatrix(const MatrixBase<OtherReal> &other, MatrixTransposeType trans = kNoTrans); /// Copy constructor taking SpMatrix... explicit CuMatrix(const CuSpMatrix<Real> &M) : CuMatrixBase<Real>() { Resize(M.NumRows(), M.NumRows(), kUndefined); this->CopyFromSp(M); } /// Copy constructor taking TpMatrix... template <typename OtherReal> explicit CuMatrix(const CuTpMatrix<OtherReal> & M, MatrixTransposeType trans = kNoTrans) : CuMatrixBase<Real>() { Resize(M.NumCols(), M.NumRows(), kUndefined); this->CopyFromTp(M, trans); } /// Copy constructor: as above, but from another type. template<typename OtherReal> explicit CuMatrix(const CuMatrixBase<OtherReal> &M, MatrixTransposeType trans = kNoTrans); CuMatrix<Real> &operator = (const CuMatrixBase<Real> &other) { this->Resize(other.NumRows(), other.NumCols(), kUndefined); this->CopyFromMat(other); return *this; } CuMatrix<Real> &operator = (const CuMatrix<Real> &other) { this->Resize(other.NumRows(), other.NumCols(), kUndefined); this->CopyFromMat(other); return *this; } CuMatrix<Real> &operator = (const MatrixBase<Real> &other) { this->Resize(other.NumRows(), other.NumCols(), kUndefined); this->CopyFromMat(other); return *this; } void Transpose(); /// Allocate the memory void Resize(MatrixIndexT rows, MatrixIndexT cols, MatrixResizeType resize_type = kSetZero, MatrixStrideType stride_type = kDefaultStride); void Swap(Matrix<Real> *mat); void Swap(CuMatrix<Real> *mat); template<typename OtherReal> void Swap(CuMatrix<OtherReal> *mat); /// I/O functions void Read(std::istream &is, bool binary); /// Destructor ~CuMatrix() { Destroy(); } inline const Matrix<Real> &Mat() const { return *(reinterpret_cast<const Matrix<Real>* >(this)); } inline Matrix<Real> &Mat() { return *(reinterpret_cast<Matrix<Real>* >(this)); } /// Here, A is interpreted as a matrix of probabilities, and "elements" as a list /// of posteriors (possibly zero-one), and "*this" as a matrix of derivatives /// w.r.t. the log-probs. /// This function does: for each element { row, column, weight } indexed i in /// the vector "elements", let x(i) = A(row(i), column(i)); then it does /// (*this)(row(i), column(i)) += weight(i) / x(i), and /// *tot_objf = \sum_i weight(i) * log(x(i)), and /// *tot_weight = \sum_i weight(i) /// Preconditions: A must be strictly positive, and no (row, column) pair /// may be repeated within "elements" void CompObjfAndDeriv(const std::vector<MatrixElement<Real> > &elements, const CuMatrix<Real> &A, Real *tot_objf, Real *tot_weight); private: void Destroy(); }; /// This class is used for a piece of a CuMatrix. template<typename Real> class CuSubMatrix: public CuMatrixBase<Real> { public: inline CuSubMatrix(const CuMatrixBase<Real> &mat, const MatrixIndexT row_offset, const MatrixIndexT num_rows, const MatrixIndexT col_offset, const MatrixIndexT num_cols); // This constructor should be used with caution; it can be used for // constructing 'fake' submatrices if you want to play with // the stride. 'data' should point to GPU data if you're using the // GPU. inline CuSubMatrix(const Real *data, const MatrixIndexT num_rows, const MatrixIndexT num_cols, const MatrixIndexT stride); /// This type of constructor is needed for Range() to work [in CuMatrix base /// class]. Cannot make it explicit or that breaks. inline CuSubMatrix<Real> (const CuSubMatrix &other): CuMatrixBase<Real> (other.data_, other.num_rows_, other.num_cols_, other.stride_) {} private: /// Disallow assignment. CuSubMatrix<Real> &operator = (const CuSubMatrix<Real> &other); }; template<typename Real> bool ApproxEqual(const CuMatrixBase<Real> &A, const CuMatrixBase<Real> &B, Real tol = 0.01) { return A.ApproxEqual(B, tol); } template<typename Real> inline void AssertEqual(const CuMatrixBase<Real> &A, const CuMatrixBase<Real> &B, float tol = 0.01) { KALDI_ASSERT(A.ApproxEqual(B, tol)); } template<typename Real> bool SameDim(const CuMatrixBase<Real> &M, const CuMatrixBase<Real> &N) { return (M.NumRows() == N.NumRows() && M.NumCols() == N.NumCols()); } template<typename Real> bool SameDimAndStride(const CuMatrixBase<Real> &M, const CuMatrixBase<Real> &N) { return (M.NumRows() == N.NumRows() && M.NumCols() == N.NumCols() && M.Stride() == N.Stride()); } /// I/O template<typename Real> std::ostream &operator << (std::ostream &out, const CuMatrixBase<Real> &mat); template<typename Real> template<typename OtherReal> Matrix<Real>::Matrix(const CuMatrixBase<OtherReal> &M, MatrixTransposeType trans) { if (trans == kNoTrans) Init(M.NumRows(), M.NumCols(), kDefaultStride); else Init(M.NumCols(), M.NumRows(), kDefaultStride); M.CopyToMat(this, trans); } template<typename Real> template<typename OtherReal> void MatrixBase<Real>::CopyFromMat(const CuMatrixBase<OtherReal> &cu, MatrixTransposeType trans) { cu.CopyToMat(this, trans); } } // namespace #include "cudamatrix/cu-matrix-inl.h" #endif |