Blame view
src/cudamatrix/cu-rand.cc
7.92 KB
8dcb6dfcb first commit |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 |
// cudamatrix/cu-rand.cc // Copyright 2016-2017 Brno University of Technology (author Karel Vesely) // See ../../COPYING for clarification regarding multiple authors // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY // KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED // WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE, // MERCHANTABLITY OR NON-INFRINGEMENT. // See the Apache 2 License for the specific language governing permissions and // limitations under the License. #include "cudamatrix/cu-rand.h" namespace kaldi { #if HAVE_CUDA == 1 /// Wrappers of curand functions to interface both float and double as 1 function, /// Wrapper of curandGenerateUniform(), curandGenerateUniformDouble(), template<typename Real> curandStatus_t curandGenerateUniformWrap(curandGenerator_t gen, Real *ptr, size_t num); // template<> curandStatus_t curandGenerateUniformWrap(curandGenerator_t gen, float *ptr, size_t num) { return curandGenerateUniform(gen, ptr, num); } template<> curandStatus_t curandGenerateUniformWrap(curandGenerator_t gen, double *ptr, size_t num) { return curandGenerateUniformDouble(gen, ptr, num); } /// Wrapper of curandGenerateNormal(), curandGenerateNormalDouble(), template<typename Real> curandStatus_t curandGenerateNormalWrap( curandGenerator_t gen, Real *ptr, size_t num); // template<> curandStatus_t curandGenerateNormalWrap<float>( curandGenerator_t gen, float *ptr, size_t num) { return curandGenerateNormal(gen, ptr, num, 0.0 /*mean*/, 1.0 /*stddev*/); } template<> curandStatus_t curandGenerateNormalWrap<double>( curandGenerator_t gen, double *ptr, size_t num) { return curandGenerateNormalDouble(gen, ptr, num, 0.0 /*mean*/, 1.0 /*stddev*/); } /// End of wrappers. #endif template<typename Real> void CuRand<Real>::RandUniform(CuMatrixBase<Real> *tgt) { #if HAVE_CUDA == 1 if (CuDevice::Instantiate().Enabled()) { CuTimer tim; // Better use 'tmp' matrix, 'tgt' can be a window into a larger matrix, // so we should not use it to generate random numbers over whole stride. // Use the option kStrideEqualNumCols to ensure consistency // (because when memory is nearly exhausted, the stride of CudaMallocPitch // may vary). CuMatrix<Real> tmp(tgt->NumRows(), tgt->NumCols(), kUndefined, kStrideEqualNumCols); size_t s = static_cast<size_t>(tmp.NumRows()) * static_cast<size_t>(tmp.Stride()); CURAND_SAFE_CALL(curandGenerateUniformWrap( GetCurandHandle(), tmp.Data(), s)); tgt->CopyFromMat(tmp); CuDevice::Instantiate().AccuProfile(__func__, tim); } else #endif { tgt->Mat().SetRandUniform(); } } template<typename Real> void CuRand<Real>::RandUniform(CuMatrix<Real> *tgt) { #if HAVE_CUDA == 1 if (CuDevice::Instantiate().Enabled()) { CuTimer tim; // Here we don't need to use 'tmp' matrix, size_t s = static_cast<size_t>(tgt->NumRows()) * static_cast<size_t>(tgt->Stride()); CURAND_SAFE_CALL(curandGenerateUniformWrap( GetCurandHandle(), tgt->Data(), s)); CuDevice::Instantiate().AccuProfile(__func__, tim); } else #endif { tgt->Mat().SetRandUniform(); } } template<typename Real> void CuRand<Real>::RandUniform(CuVectorBase<Real> *tgt) { #if HAVE_CUDA == 1 if (CuDevice::Instantiate().Enabled()) { CuTimer tim; CURAND_SAFE_CALL(curandGenerateUniformWrap( GetCurandHandle(), tgt->Data(), tgt->Dim())); CuDevice::Instantiate().AccuProfile(__func__, tim); } else #endif { tgt->Vec().SetRandUniform(); } } template<typename Real> void CuRand<Real>::RandGaussian(CuMatrixBase<Real> *tgt) { #if HAVE_CUDA == 1 if (CuDevice::Instantiate().Enabled()) { CuTimer tim; // Better use 'tmp' matrix, 'tgt' can be a window into a larger matrix, // so we should not use it to generate random numbers over whole stride. // Also, we ensure to have 'even' number of elements for calling 'curand' // by possibly adding one column. Even number of elements is required by // curandGenerateUniform(), curandGenerateUniformDouble(). // Use the option kStrideEqualNumCols to ensure consistency // (because when memory is nearly exhausted, the stride of CudaMallocPitch // may vary). MatrixIndexT num_cols_even = tgt->NumCols() + (tgt->NumCols() % 2); // + 0 or 1, CuMatrix<Real> tmp(tgt->NumRows(), num_cols_even, kUndefined, kStrideEqualNumCols); CURAND_SAFE_CALL(curandGenerateNormalWrap( GetCurandHandle(), tmp.Data(), tmp.NumRows()*tmp.Stride())); tgt->CopyFromMat(tmp.ColRange(0,tgt->NumCols())); CuDevice::Instantiate().AccuProfile(__func__, tim); } else #endif { tgt->Mat().SetRandn(); } } template<typename Real> void CuRand<Real>::RandGaussian(CuMatrix<Real> *tgt) { #if HAVE_CUDA == 1 if (CuDevice::Instantiate().Enabled()) { CuTimer tim; // Here we don't need to use 'tmp' matrix, if the number of elements is even, MatrixIndexT num_elements = tgt->NumRows() * tgt->Stride(); if (0 == (num_elements % 2)) { CURAND_SAFE_CALL(curandGenerateNormalWrap( GetCurandHandle(), tgt->Data(), num_elements)); } else { // We use 'tmp' matrix with one column added, this guarantees an even // number of elements. Use the option kStrideEqualNumCols to ensure // consistency (because when memory is nearly exhausted, the stride of // CudaMallocPitch may vary). MatrixIndexT num_cols_even = tgt->NumCols() + (tgt->NumCols() % 2); // + 0 or 1, CuMatrix<Real> tmp(tgt->NumRows(), num_cols_even, kUndefined, kStrideEqualNumCols); CURAND_SAFE_CALL(curandGenerateNormalWrap( GetCurandHandle(), tmp.Data(), tmp.NumRows() * tmp.Stride())); tgt->CopyFromMat(tmp.ColRange(0,tgt->NumCols())); } CuDevice::Instantiate().AccuProfile(__func__, tim); } else #endif { tgt->Mat().SetRandn(); } } template<typename Real> void CuRand<Real>::RandGaussian(CuVectorBase<Real> *tgt) { #if HAVE_CUDA == 1 if (CuDevice::Instantiate().Enabled()) { CuTimer tim; // To ensure 'even' number of elements, we use 'tmp' vector of even length. // Even number of elements is required by 'curand' functions: // curandGenerateUniform(), curandGenerateUniformDouble(). MatrixIndexT num_elements = tgt->Dim(); if (0 == (num_elements % 2)) { CURAND_SAFE_CALL(curandGenerateNormalWrap( GetCurandHandle(), tgt->Data(), tgt->Dim())); } else { MatrixIndexT dim_even = tgt->Dim() + (tgt->Dim() % 2); // + 0 or 1, CuVector<Real> tmp(dim_even, kUndefined); CURAND_SAFE_CALL(curandGenerateNormalWrap( GetCurandHandle(), tmp.Data(), tmp.Dim())); tgt->CopyFromVec(tmp.Range(0,tgt->Dim())); } CuDevice::Instantiate().AccuProfile(__func__, tim); } else #endif { tgt->Vec().SetRandn(); } } /// convert probabilities binary values, template<typename Real> void CuRand<Real>::BinarizeProbs(const CuMatrix<Real> &probs, CuMatrix<Real> *states) { CuMatrix<Real> tmp(probs.NumRows(), probs.NumCols()); this->RandUniform(&tmp); // [0..1] tmp.Scale(-1.0); // [-1..0] tmp.AddMat(1.0, probs); // [-1..+1] states->Heaviside(tmp); // negative } /// add gaussian noise to each element template<typename Real> void CuRand<Real>::AddGaussNoise(CuMatrix<Real> *tgt, Real gscale) { // Use the option kStrideEqualNumCols to ensure consistency (because when // memory is nearly exhausted, the stride of CudaMallocPitch may vary). CuMatrix<Real> tmp(tgt->NumRows(), tgt->NumCols(), kUndefined, kStrideEqualNumCols); this->RandGaussian(&tmp); tgt->AddMat(gscale, tmp); } // explicit instantiation, template class CuRand<float>; template class CuRand<double>; } // namespace, |