Blame view

src/decoder/training-graph-compiler.cc 8.59 KB
8dcb6dfcb   Yannick Estève   first commit
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
  // decoder/training-graph-compiler.cc
  
  // Copyright 2009-2011  Microsoft Corporation
  //                2018  Johns Hopkins University (author: Daniel Povey)
  
  // See ../../COPYING for clarification regarding multiple authors
  //
  // Licensed under the Apache License, Version 2.0 (the "License");
  // you may not use this file except in compliance with the License.
  // You may obtain a copy of the License at
  
  //  http://www.apache.org/licenses/LICENSE-2.0
  
  // THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
  // KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED
  // WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE,
  // MERCHANTABLITY OR NON-INFRINGEMENT.
  // See the Apache 2 License for the specific language governing permissions and
  // limitations under the License.
  #include "decoder/training-graph-compiler.h"
  #include "hmm/hmm-utils.h" // for GetHTransducer
  
  namespace kaldi {
  
  
  TrainingGraphCompiler::TrainingGraphCompiler(const TransitionModel &trans_model,
                                               const ContextDependency &ctx_dep,  // Does not maintain reference to this.
                                               fst::VectorFst<fst::StdArc> *lex_fst,
                                               const std::vector<int32> &disambig_syms,
                                               const TrainingGraphCompilerOptions &opts):
      trans_model_(trans_model), ctx_dep_(ctx_dep), lex_fst_(lex_fst),
      disambig_syms_(disambig_syms), opts_(opts) {
    using namespace fst;
    const std::vector<int32> &phone_syms = trans_model_.GetPhones();  // needed to create context fst.
  
    KALDI_ASSERT(!phone_syms.empty());
    KALDI_ASSERT(IsSortedAndUniq(phone_syms));
    SortAndUniq(&disambig_syms_);
    for (int32 i = 0; i < disambig_syms_.size(); i++)
      if (std::binary_search(phone_syms.begin(), phone_syms.end(),
                             disambig_syms_[i]))
        KALDI_ERR << "Disambiguation symbol " << disambig_syms_[i]
                  << " is also a phone.";
  
    subsequential_symbol_ = 1 + phone_syms.back();
    if (!disambig_syms_.empty() && subsequential_symbol_ <= disambig_syms_.back())
      subsequential_symbol_ = 1 + disambig_syms_.back();
  
    {
      int32 N = ctx_dep.ContextWidth(),
          P = ctx_dep.CentralPosition();
      if (P != N-1)
        AddSubsequentialLoop(subsequential_symbol_, lex_fst_);  // This is needed for
      // systems with right-context or we will not successfully compose
      // with C.
    }
  
    {  // make sure lexicon is olabel sorted.
      fst::OLabelCompare<fst::StdArc> olabel_comp;
      fst::ArcSort(lex_fst_, olabel_comp);
    }
  }
  
  bool TrainingGraphCompiler::CompileGraphFromText(
      const std::vector<int32> &transcript,
      fst::VectorFst<fst::StdArc> *out_fst) {
    using namespace fst;
    VectorFst<StdArc> word_fst;
    MakeLinearAcceptor(transcript, &word_fst);
    return CompileGraph(word_fst, out_fst);
  }
  
  bool TrainingGraphCompiler::CompileGraph(const fst::VectorFst<fst::StdArc> &word_fst,
                                           fst::VectorFst<fst::StdArc> *out_fst) {
    using namespace fst;
    KALDI_ASSERT(lex_fst_ !=NULL);
    KALDI_ASSERT(out_fst != NULL);
  
    VectorFst<StdArc> phone2word_fst;
    // TableCompose more efficient than compose.
    TableCompose(*lex_fst_, word_fst, &phone2word_fst, &lex_cache_);
  
    KALDI_ASSERT(phone2word_fst.Start() != kNoStateId);
  
    const std::vector<int32> &phone_syms = trans_model_.GetPhones();  // needed to create context fst.
  
    // inv_cfst will be expanded on the fly, as needed.
    InverseContextFst inv_cfst(subsequential_symbol_,
                               phone_syms,
                               disambig_syms_,
                               ctx_dep_.ContextWidth(),
                               ctx_dep_.CentralPosition());
  
  
    VectorFst<StdArc> ctx2word_fst;
    ComposeDeterministicOnDemandInverse(phone2word_fst, &inv_cfst, &ctx2word_fst);
    // now ctx2word_fst is C * LG, assuming phone2word_fst is written as LG.
    KALDI_ASSERT(ctx2word_fst.Start() != kNoStateId);
  
    HTransducerConfig h_cfg;
    h_cfg.transition_scale = opts_.transition_scale;
  
    std::vector<int32> disambig_syms_h; // disambiguation symbols on
    // input side of H.
    VectorFst<StdArc> *H = GetHTransducer(inv_cfst.IlabelInfo(),
                                          ctx_dep_,
                                          trans_model_,
                                          h_cfg,
                                          &disambig_syms_h);
  
    VectorFst<StdArc> &trans2word_fst = *out_fst;  // transition-id to word.
    TableCompose(*H, ctx2word_fst, &trans2word_fst);
  
    KALDI_ASSERT(trans2word_fst.Start() != kNoStateId);
  
    // Epsilon-removal and determinization combined. This will fail if not determinizable.
    DeterminizeStarInLog(&trans2word_fst);
  
    if (!disambig_syms_h.empty()) {
      RemoveSomeInputSymbols(disambig_syms_h, &trans2word_fst);
      // we elect not to remove epsilons after this phase, as it is
      // a little slow.
      if (opts_.rm_eps)
        RemoveEpsLocal(&trans2word_fst);
    }
  
  
    // Encoded minimization.
    MinimizeEncoded(&trans2word_fst);
  
    std::vector<int32> disambig;
    bool check_no_self_loops = true;
    AddSelfLoops(trans_model_,
                 disambig,
                 opts_.self_loop_scale,
                 opts_.reorder,
                 check_no_self_loops,
                 &trans2word_fst);
  
    delete H;
    return true;
  }
  
  
  bool TrainingGraphCompiler::CompileGraphsFromText(
      const std::vector<std::vector<int32> > &transcripts,
      std::vector<fst::VectorFst<fst::StdArc>*> *out_fsts) {
    using namespace fst;
    std::vector<const VectorFst<StdArc>* > word_fsts(transcripts.size());
    for (size_t i = 0; i < transcripts.size(); i++) {
      VectorFst<StdArc> *word_fst = new VectorFst<StdArc>();
      MakeLinearAcceptor(transcripts[i], word_fst);
      word_fsts[i] = word_fst;
    }
    bool ans = CompileGraphs(word_fsts, out_fsts);
    for (size_t i = 0; i < transcripts.size(); i++)
      delete word_fsts[i];
    return ans;
  }
  
  bool TrainingGraphCompiler::CompileGraphs(
      const std::vector<const fst::VectorFst<fst::StdArc>* > &word_fsts,
      std::vector<fst::VectorFst<fst::StdArc>* > *out_fsts) {
  
    using namespace fst;
    KALDI_ASSERT(lex_fst_ !=NULL);
    KALDI_ASSERT(out_fsts != NULL && out_fsts->empty());
    out_fsts->resize(word_fsts.size(), NULL);
    if (word_fsts.empty()) return true;
  
    const std::vector<int32> &phone_syms = trans_model_.GetPhones();  // needed to create context fst.
  
    // inv_cfst will be expanded on the fly, as needed.
    InverseContextFst inv_cfst(subsequential_symbol_,
                               phone_syms,
                               disambig_syms_,
                               ctx_dep_.ContextWidth(),
                               ctx_dep_.CentralPosition());
  
    for (size_t i = 0; i < word_fsts.size(); i++) {
      VectorFst<StdArc> phone2word_fst;
      // TableCompose more efficient than compose.
      TableCompose(*lex_fst_, *(word_fsts[i]), &phone2word_fst, &lex_cache_);
  
      KALDI_ASSERT(phone2word_fst.Start() != kNoStateId &&
                   "Perhaps you have words missing in your lexicon?");
  
      VectorFst<StdArc> ctx2word_fst;
      ComposeDeterministicOnDemandInverse(phone2word_fst, &inv_cfst, &ctx2word_fst);
      // now ctx2word_fst is C * LG, assuming phone2word_fst is written as LG.
      KALDI_ASSERT(ctx2word_fst.Start() != kNoStateId);
  
      (*out_fsts)[i] = ctx2word_fst.Copy();  // For now this contains the FST with symbols
      // representing phones-in-context.
    }
  
    HTransducerConfig h_cfg;
    h_cfg.transition_scale = opts_.transition_scale;
  
    std::vector<int32> disambig_syms_h;
    VectorFst<StdArc> *H = GetHTransducer(inv_cfst.IlabelInfo(),
                                          ctx_dep_,
                                          trans_model_,
                                          h_cfg,
                                          &disambig_syms_h);
  
    for (size_t i = 0; i < out_fsts->size(); i++) {
      VectorFst<StdArc> &ctx2word_fst = *((*out_fsts)[i]);
      VectorFst<StdArc> trans2word_fst;
      TableCompose(*H, ctx2word_fst, &trans2word_fst);
  
      DeterminizeStarInLog(&trans2word_fst);
  
      if (!disambig_syms_h.empty()) {
        RemoveSomeInputSymbols(disambig_syms_h, &trans2word_fst);
        if (opts_.rm_eps)
          RemoveEpsLocal(&trans2word_fst);
      }
  
      // Encoded minimization.
      MinimizeEncoded(&trans2word_fst);
  
      std::vector<int32> disambig;
      bool check_no_self_loops = true;
      AddSelfLoops(trans_model_,
                   disambig,
                   opts_.self_loop_scale,
                   opts_.reorder,
                   check_no_self_loops,
                   &trans2word_fst);
  
      KALDI_ASSERT(trans2word_fst.Start() != kNoStateId);
  
      *((*out_fsts)[i]) = trans2word_fst;
    }
  
    delete H;
    return true;
  }
  
  
  }  // end namespace kaldi