Blame view

src/doc/graph_recipe_test.dox 23.1 KB
8dcb6dfcb   Yannick Estève   first commit
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
  // doc/graph_recipe_test.dox
  
  
  // Copyright 2009-2011 Microsoft Corporation
  
  // See ../../COPYING for clarification regarding multiple authors
  //
  // Licensed under the Apache License, Version 2.0 (the "License");
  // you may not use this file except in compliance with the License.
  // You may obtain a copy of the License at
  
  //  http://www.apache.org/licenses/LICENSE-2.0
  
  // THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
  // KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED
  // WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE,
  // MERCHANTABLITY OR NON-INFRINGEMENT.
  // See the Apache 2 License for the specific language governing permissions and
  // limitations under the License.
  
  namespace kaldi {
  
  /**
  
   \page graph_recipe_test Decoding-graph creation recipe (test time)
  
   Here we explain our normal graph creation approach step by step, along
   with certain data-preparation stages that are related to it.
   Most of the details of this approach are not hardcoded into our tools; we are
   just explaining how it is currently being done.
   If this section is confusing, the best remedy is probably to read
   <a href=http://www.cs.nyu.edu/~mohri/pub/hbka.pdf> "Speech Recognition
   with Weighted Finite-State Transducers" </a> by Mohri et al.
   Be warned: that paper is quite long, and reading it will take at least a
   few hours for those not already familiar with FSTs.
   Another good resource is the <a href=http://www.openfst.org> OpenFst website </a>
   which will provide more context on things like symbol tables.
  
   \section graph_symtab Preparing the initial symbol tables
  
  We need to prepare the OpenFst symbol tables words.txt and phones.txt.  These
  assign integer id's to all the words and phones in our system.  Note
  that OpenFst reserves symbol zero for epsilon.  An example of how the
  symbol tables look for the WSJ task is:
  \verbatim
  ## head words.txt
  <eps> 0
  !SIL 1
  <s> 2
  </s> 3
  <SPOKEN_NOISE> 4
  <UNK> 5
  <NOISE> 6
  !EXCLAMATION-POINT 7
  "CLOSE-QUOTE 8
  ## tail -2 words.txt
  }RIGHT-BRACE 123683
  #0 123684
  ## head data/phones.txt
  <eps> 0
  SIL 1
  SPN 2
  NSN 3
  AA 4
  AA_B 5
  \endverbatim
  The words.txt file contains the single disambiguation symbol "#0" (used for epsilon
  on the input of G.fst).  This is the last-numbered word in our recipe.  Be careful
  with this if your
  lexicon contains a word "#0".  The phones.txt file does not contain disambiguation
  symbols but after creating L.fst we will create a file phones_disambig.txt that
  has the disambiguation symbols in (this is just useful for debugging).
  
    \section graph_lexicon Preparing the lexicon L
  
   First we create a lexicon in text format, initially without disambiguation symbols.
   Our C++ tools will never interact with this, it will just be used by a script that creates
   lexicon FST.  A small part of our WSJ lexicon is:
  \verbatim
  ## head data/lexicon.txt
  !SIL SIL
  <s>
  </s>
  <SPOKEN_NOISE> SPN
  <UNK> SPN
  <NOISE> NSN
  !EXCLAMATION-POINT EH2_B K S K L AH0 M EY1 SH AH0 N P OY2 N T_E
  "CLOSE-QUOTE K_B L OW1 Z K W OW1 T_E
  \endverbatim
  The beginning, ending and stress markers on the phones (e.g. T_E, or AH0)
  are specific to our WSJ recipe and as far as our toolkit is concerned,
  they are treated as distinct phones (however, we do handle the tree-building
  specially for this setup; read about the roots file in \ref tree_building).
  
  Notice that we allow words with empty phonetic representations.
  This lexicon will be used to create the L.fst used in training (without
  disambiguation symbols).  We also create a lexicon with disambiguation
  symbols, used in decoding-graph creation.  An extract of this file
  is here:
  \verbatim
  # [from data/lexicon_disambig.txt]
  !SIL    SIL
  <s> #1
  </s>    #2
  <SPOKEN_NOISE>  SPN #3
  <UNK>   SPN #4
  <NOISE> NSN
  ...
  {BRACE  B_B R EY1 S_E #4
  {LEFT-BRACE L_B EH1 F T B R EY1 S_E #4
  \endverbatim
  This file is created by a script; the script outputs the number of
  disambiguation symbols it had to add, and this is used to create
  the symbol table phones_disambig.txt.  This is the same as phones.txt
  but it also contains the integer id's for the disambiguation symbols
  \#0, \#1, \#2 and so on (\#0 is a special disambiguation symbol which
  comes from G.fst but will be "passed through" L.fst via self-loops).
  A section of the middle of the file phones_disambig.txt is:
  \verbatim
  ZH_E 338
  ZH_S 339
  #0  340
  #1  341
  #2  342
  #3  343
  \endverbatim
  The numbers are so high because in this (WSJ) recipe we added
  stress and position information to the phones.
  Note that the disambiguation symbols used for the empty words
  (i.e. \<s\> and \</s\>) have to be distinct from those used for the normal
  words, so the "normal" disambiguation symbols in this
  example start from \#3.
  
  The command to convert the lexicon without disambiguation symbols
  into an FST is:
  \verbatim
  scripts/make_lexicon_fst.pl data/lexicon.txt 0.5 SIL | \
    fstcompile --isymbols=data/phones.txt --osymbols=data/words.txt \
    --keep_isymbols=false --keep_osymbols=false | \
     fstarcsort --sort_type=olabel > data/L.fst
  \endverbatim
  Here, the script make_lexicon_fst.pl creates the text representation
  of the FST.  The 0.5 is the silence probability (i.e. at the
  beginning of sentence and after each word, we output silence with
  probability 0.5; the probability mass assigned to having no silence is
  1.0 - 0.5 = 0.5.  The rest of the commands in this example
  relate to converting the FST into compiled form; fstarcsort is
  necessary because we are going to compose later.
  
  The structure of the lexicon is roughly as one might expect.  There
  is one state (the "loop state") which is final.  There is a start state
  that has two transitions to the loop state: one with silence and one
  without.  From the loop state there is a transition corresponding to
  each word, and that word is the output symbol on the transition;
  the input symbol is the first phone of that word.
  It is important both for the efficiency of composition and the
  effectiveness of minimization that the output symbol should be as early as
  possible (i.e. at the beginning not the end of the word).  At the end of each
  word, to handle optional silence, the transition corresponding to
  the last phone is in two forms: one to the loop state and one to
  the "silence state" which has a transition to the loop state.
  We don't bother putting optional silence after silence words, which we define
  as words that have just one phone that is the silence phone.
  
  Creating the lexicon with disambiguation symbols is just slightly more
  complicated.  The issue
  is that we have to add the self-loops to the lexicon so that the
  disambiguation symbol \#0 from G.fst can be passed through the lexicon.
  We do this with the program fstaddselfloops (c.f. \ref fst_algo_disambig),
  although we could easily have done it "manually" in the script make_lexicon_fst.pl.
  \verbatim
  phone_disambig_symbol=`grep \#0 data/phones_disambig.txt | awk '{print $2}'`
  word_disambig_symbol=`grep \#0 data/words.txt | awk '{print $2}'`
  
  scripts/make_lexicon_fst.pl data/lexicon_disambig.txt 0.5 SIL  | \
     fstcompile --isymbols=data/phones_disambig.txt --osymbols=data/words.txt \
     --keep_isymbols=false --keep_osymbols=false |   \
     fstaddselfloops  "echo $phone_disambig_symbol |" "echo $word_disambig_symbol |" | \
     fstarcsort --sort_type=olabel > data/L_disambig.fst
  \endverbatim
  The program fstaddselfloops is not one of the original OpenFst command-line
  tools, it is one of our own (we have a number of such programs).
  
   \section graph_grammar Preparing the grammar G
  
  The grammar G is for the most part an acceptor (i.e. input and output symbols are
  identical on each arc) with words as its symbols.  The exception is the
  disambiguation symbol \#0 which only appears on the input side.  Assuming the
  input is an Arpa file, we use the Kaldi program arpa2fst to convert it to an FST.
  The program arpa2fst outputs  an FST with embedded symbols.
  In Kaldi we generally use FSTs without embedded symbols (i.e. we use separate symbol tables).
  The steps we have to do aside from just running arpa2fst are as follows:
   - We have to remove the embedded symbols from the FST (and rely on the symbol tables
     on disk).
   - We have to make sure there are no out-of-vocabulary words in the language model
   - We have to remove "illegal" sequences of the start and end-of-sentence symbols, e.g.
      \<s\> followed by \</s\>, because these cause L o G to be non-determinizable.
   - We have to replace epsilons on the input side with the special disambiguation symbol \#0.
  
  A slightly simplified version of the actual script that does this is as follows:
  \verbatim
  gunzip -c data_prep/lm.arpa.gz | \
    arpa2fst --disambig-symbol=#0 \
               --read-symbol-table=data/words.txt - data/G.fst
  \endverbatim
  The last command (fstisstochastic) is a diagnostic step (see \ref fst_algo_stochastic).
  In one typical example, it prints out the numbers:
  \verbatim
  9.14233e-05 -0.259833
  \endverbatim
  The first number is small, so it confirms that there is no state that has
  the probability mass of its arcs plus final-state significantly less than one.
  The second number is significant, and this means that there are states that
  have "too much" probability mass (the numeric values of the weights in the
  FSTs can generally be interpreted as negated log probabilities).  Having
  some states with "too much" probability mass is normal for the FST
  representations of language models with backoff.  During later graph creation steps we will
  be verifying that this non-stochasticity has not become worse than it was
  at the start.
  
  The resulting FST G.fst is of course only used in test time.  In training time
  we use linear FSTs generated from the training word-sequences, but this is done
  inside Kaldi processes, not at the script level.
  
   \section graph_lg Preparing LG
  
   When composing L with G, we adhere in outline to a fairly standard recipe, i.e. we
   compute min(det(L o G)).  The command line is as follows:
  \verbatim
      fsttablecompose data/L_disambig.fst data/G.fst | \
          fstdeterminizestar --use-log=true | \
          fstminimizeencoded | fstpushspecial | \
           fstarcsort --sort-type=ilabel > somedir/LG.fst
  \endverbatim
   There are some small differences from OpenFst's algorithms.
   We use a more efficient composition algorithm (see \ref fst_algo_composition)
   implemented by our command-line tool "fsttablecompose".  Our determinization
   is an algorithm that also removes epsilons, implemented by the command-line
   program fstdeterminizestar.  The option --use-log=true asks the program to first
   cast the FST to the log semiring; this preserves stochasticity (in the log semiring);
   see \ref fst_algo_stochastic.
  
   We do minimization with the program "fstminimizeencoded".  This is mostly the
   same as the version of OpenFst's minimization algorithm that applies to
   weighted acceptors; the only change relevant here is that
   it avoids pushing weights, hence preserving stochasticity (see \ref fst_algo_minimization
   for details).
  
   The program "fstpushspecial" is similar to OpenFst's "fstpush" program, but if
   the weights don't sum to one it ensures that all the states "sum to" the same
   value (possibly different from one), rather than trying to push the "extra"
   weight to the start or end of the graph.  This has the advantage that it
   can never fail ("fstpush" can fail or loop for a very long time if the FST "sums to" infinity);
   it is also much faster.   See push-special.cc for more detailed documentation.
  
   The "fstarcsort" stage sorts the arcs in a way that will help later composition
   operations to be fast.
  
  
   \section graph_clg Preparing CLG
  
   To get a transducer whose inputs are context-dependent phones, we need to prepare an FST
   called CLG, which is equivalent to C o L o G, where L and G are the lexicon and grammar and C
   represents the phonetic context.  For a triphone system, the input symbols of C would
   be of the form a/b/c (i.e. triples of phones), and the output symbols would be single
   phones (e.g. a or b or c).  See \ref tree_window for more context on the phonetic context
   windows, and how we generalize to different context sizes.  Firstly, we describe
   how we would create the context FST C if we were to make it by itself and compose
   normally (our scripts do not actually work this way, for efficiency and scalability
   reasons).
  
   \subsection graph_c Making the context transducer
  
   In this section we explain how we can obtain C as a standalone FST.
  
   The basic structure of C is that it has states for all possible phone windows of
   size N-1 (c.f. \ref tree_window; N=3 in the triphone case).  The first state,
   meaning begin-of-utterance, would just correspond to N-1 epsilons.  Each state
   has a transition for each of the phones (let's forget about self-loops for now).
   As a generic example, state a/b has a transition with c on the output and a/b/c
   on the input, going to state b/c.  There are special cases at the begin and end
   of utterance.
  
   At the beginning of utterance, suppose the state is \<eps\>/\<eps\> and the
   output symbol is a.  Normally, the input symbol would be \<eps\>/\<eps\>/a.  But
   this doesn't represent a phone since (assuming P = 1), the central element
   is \<eps\> which is not a phone.  In this case we let the input symbol of the
   arc be #-1 which is a special symbol we introduce for this purpose (we don't use
   epsilon here as the standard recipe does, as it can lead to nondeterminizability
   when there are empty words).
  
   The end-of-utterance case is a little complicated.  The context FST has, on the
   right (its output side), a special symbol $ that occurs at the end of
   utterances.  Consider the triphone case.  At the end of utterance, after seeing
   all symbols we need to flush out the last triphone (e.g. a/b/\<eps\>, where
   \<eps\> represents undefined context).  The natural way to do this would be to
   have a transition with a/b/\<eps\> on its input and \<eps\> on its output, from
   the state a/b to a final state (e.g. b/\<eps\> or a special final state).  But this is
   inefficient for composition, because if it was not the end of the utterance
   we would have to explore such transitions before finding them pruned away.
   Instead we use $ as the end-of-utterance symbol, and make sure it appears once
   at the end of each path in LG.  Then we replace \<eps\> with $ on the output of
   C.  In general the number of repetitions of $ is equal to N-P-1.  In order to
   avoid the hassle having to work out how many subsequential symbols to add to LG, we just
   allow it to accept any number of such symbols at the end of utterance.  This
   is acheived by the function AddSubsequentialLoop() and the command-line program
   fstaddsubsequentialloop.
  
  
  If we wanted C on its own, we would first need a list of
  disambiguation symbols; and we would also need to work out an unused symbol id we could use
  for the subsequential symbol, as follows:
  \verbatim
   grep '#' data/phones_disambig.txt | awk '{print $2}' > $dir/disambig_phones.list
   subseq_sym=`tail -1 data/phones_disambig.txt | awk '{print $2+1;}'`
  \endverbatim
   We could then create C with the following command (however, see below
   regarding fstcomposecontext; we don't do this in practice as it is inefficient).
  \verbatim
   fstmakecontextfst --read-disambig-syms=$dir/disambig_phones.list \
   --write-disambig-syms=$dir/disambig_ilabels.list data/phones.txt $subseq_sym \
     $dir/ilabels | fstarcsort --sort_type=olabel > $dir/C.fst
  \endverbatim
  The program fstmakecontextfst needs the list of phones, a list of disambiguation symbols
  and the identity of the subsequential symbol.  In addition to C.fst, it writes
  out the file "ilabels" that interprets the symbols on the left of C.fst
  (see \ref tree_ilabel).  The composition with LG can be done as follows:
  \verbatim
  fstaddsubsequentialloop $subseq_sym $dir/LG.fst | \
   fsttablecompose $dir/C.fst - > $dir/CLG.fst
  \endverbatim
  For printing out C.fst and anything using the same symbols
  that index "ilabels", we can make a suitable symbol table using the following
  command:
  \verbatim
   fstmakecontextsyms data/phones.txt $dir/ilabels > $dir/context_syms.txt
  \endverbatim
  This command knows about the "ilabels" format (\ref tree_ilabel).
  An example random path through the CLG fst (for Resource Management), printed
  out with this symbol table, is as follows:
  \verbatim
  ## fstrandgen --select=log_prob $dir/CLG.fst | \
     fstprint --isymbols=$dir/context_syms.txt --osymbols=data/words.txt -
  0   1   #-1 <eps>
  1   2   <eps>/s/ax  SUPPLIES
  2   3   s/ax/p  <eps>
  3   4   ax/p/l  <eps>
  4   5   p/l/ay  <eps>
  5   6   l/ay/z  <eps>
  6   7   ay/z/sil    <eps>
  7   8   z/sil/<eps> <eps>
  8
  \endverbatim
  
   \subsection graph_compose_c Composing with C dynamically
  
   In the normal graph creation recipe, we use a program fstcomposecontext which
   dynamically creates the needed states and arcs of C without wastefully creating it
   all.  The command line is:
  \verbatim
  fstcomposecontext  --read-disambig-syms=$dir/disambig_phones.list \
                     --write-disambig-syms=$dir/disambig_ilabels.list \
                     $dir/ilabels < $dir/LG.fst >$dir/CLG.fst
  \endverbatim
   If we had different context parameters N and P than the defaults (3 and 1), we
   would supply extra options to this program.  This program writes
   the file "ilabels" (see \ref tree_ilabel) which interprets the input symbols
   of CLG.fst.  The first few lines of an ilabels file from the Resource
   Management recipe are as follows:
  \verbatim
  65028 [ ]
  [ 0 ]
  [ -49 ]
  [ -50 ]
  [ -51 ]
  [ 0 1 0 ]
  [ 0 1 1 ]
  [ 0 1 2 ]
  ...
  \endverbatim
  The number 65028 is the number of elements in the file.
  Lines like [ -49 ] are for disambiguation symbols; lines like [ 0 1 2 ]
  represent acoustic contexts windows; the first two entries are [ ] which is for
  epsilon (never used), and [ 0 ] which is for the special disambiguation
  symbol with printed form \#-1 that we use at the beginning of C in place
  of epsilon, to ensure determinizability.
  
   \subsection graph_change_ilabel Reducing the number of context-dependent input symbols
  
   After creating CLG.fst, there is an optional graph creation stage
   that can reduce its size.
   We use the program make-ilabel-transducer, which works out from the decision
   tree and the HMM topology information, which subsets of context-dependent phones would
   correspond to the same compiled graph and can therefore be merged (we pick
   an arbitrary element of each subset and convert all context windows to that context
   window). This is a similar concept to HTK's logical-to-physical mapping.    The
   command is:
  \verbatim
   make-ilabel-transducer --write-disambig-syms=$dir/disambig_ilabels_remapped.list \
    $dir/ilabels $tree $model $dir/ilabels.remapped > $dir/ilabel_map.fst
  \endverbatim
   This program requires the tree and the model; it outputs a new ilabel_info
   object called "ilabels.remapped"; this is in the same format as the original
   "ilabels" file, but has fewer lines.  The FST "ilabel_map.fst" is composed
   with CLG.fst and remaps the labels.  After doing this we determinize
   and minimize so we can immediately realize any size reductions:
  \verbatim
   fstcompose $dir/ilabel_map.fst $dir/CLG.fst  | \
     fstdeterminizestar --use-log=true | \
     fstminimizeencoded > $dir/CLG2.fst
  \endverbatim
   For typical setups this stage does not actually reduce the graph size
   by very much (5\% to 20\% reduction is typical), and in any case
   it is only the size of intermediate graph-creation stages that we
   are reducing by this mechanism.  But the savings could become significant
   for systems with wider context.
  
   \section graph_h Making the H transducer
  
   In the conventional FST recipe, the H transducer is the transducer that has, on
   its output, context dependent phones, and on its input, symbols representing
   acoustic states.  In our case, the symbol on the input of H (or HCLG) is not the
   acoustic state (in our terminology, the pdf-id) but instead something we call the transition-id (see
   \ref transition_model_identifiers).  The transition-id encodes the pdf-id plus some
   other information including the phone.  Each transition-id can be mapped to a
   pdf-id.  The H transducer that we create does not encode the self-loops.  These
   are added later by a separate program.  The H transducer has a
   state that is both initial and final, and from this state there is a transition for
   every entry but the zeroth one in the ilabel_info object (the ilabels file, see above).  The
   transitions for the context dependent phones go to structures for the
   corresponding HMMs (lacking self-loops), and then back to the start state.  For
   the normal topology, these structures for the HMMs would just be linear
   sequences of three arcs.  H also has self-loops on the initial state for each of
   the disambiguation symbols (\#-1, \#0, \#1, \#2, \#3 and so on).
  
   The section of script that makes the H transducer (we call it Ha
   because it lacks self-loops at this point), is:
  \verbatim
  make-h-transducer --disambig-syms-out=$dir/disambig_tstate.list \
     --transition-scale=1.0  $dir/ilabels.remapped \
     $tree $model  > $dir/Ha.fst
  \endverbatim
   There is an optional argument to set the transition scale; in our
   current training scripts, this scale is 1.0.  This scale only
   affects the parts of the transitions that do not relate to
   self-loop probabilities, and in the normal topology (Bakis model) it
   has no effect at all; see \ref hmm_scale for more explanation.
   In addition to the FST, the program also writes a list of
   disambiguation symbols which must be removed later.
  
   \section graph_hclg Making HCLG
  
   The first step in making the final graph HCLG is to make the
   HCLG that lacks self-loops.  The command in our current script is
   as follows:
  \verbatim
    fsttablecompose $dir/Ha.fst $dir/CLG2.fst | \
     fstdeterminizestar --use-log=true | \
     fstrmsymbols $dir/disambig_tstate.list | \
     fstrmepslocal  | fstminimizeencoded > $dir/HCLGa.fst
  \endverbatim
   Here, CLG2.fst is the version of CLG with a reduced symbol set ("logical"
   triphones, in HTK terminology).  We remove the disambiguation symbols and any
   easy-to-remove epsilons (see \ref fst_algo_eps), before minimizing; our
   minimization algorithm is one that avoids pushing symbols and weights (hence
   preserving stochasticity), and accepts nondeterministic input (see \ref
   fst_algo_minimization).
  
   \section graph_selfloops Adding self-loops to HCLG
  
   Adding self-loops to HCLG is done by the following command:
  \verbatim
    add-self-loops --self-loop-scale=0.1 \
      --reorder=true $model < $dir/HCLGa.fst > $dir/HCLG.fst
  \endverbatim
   See \ref hmm_scale for an explanation of how the self-loop-scale of 0.1
   is applied (note that it also affects the non-self-loop probabilities).
   For an explanation of the "reorder" option, see \ref hmm_reorder;
   the "reorder" option increases decoding speed but is not compatible with
   the \ref decoder_kaldi "kaldi decoder".
   The add-self-loops program does not just add self-loops; it may also
   have to duplicate states and add epsilon transitions in order to
   ensure that the self-loops can be added in a consistent way.  This
   issue is mentioned in slightly more detail in \ref hmm_reorder.
   This is the only stage of graph creation that does not preserve stochasticity;
   it does not preserve it because the self-loop-scale is not 1.   So
   the program fstisstochastic should give the same output for all of
   G.fst, LG.fst, CLG.fst and HCLGa.fst, but not for HCLG.fst.
   We do not determinize again after the add-self-loops stage; this would
   fail because we have already removed the disambiguation symbols.  Anyway,
   this would be slow and we believe that there is nothing further to be gained from
   determinizing and minimizing at this point.
  
  
  
  */
  
  
  }