Blame view
src/doc/graph_recipe_test.dox
23.1 KB
8dcb6dfcb first commit |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 |
// doc/graph_recipe_test.dox // Copyright 2009-2011 Microsoft Corporation // See ../../COPYING for clarification regarding multiple authors // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // http://www.apache.org/licenses/LICENSE-2.0 // THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY // KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED // WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE, // MERCHANTABLITY OR NON-INFRINGEMENT. // See the Apache 2 License for the specific language governing permissions and // limitations under the License. namespace kaldi { /** \page graph_recipe_test Decoding-graph creation recipe (test time) Here we explain our normal graph creation approach step by step, along with certain data-preparation stages that are related to it. Most of the details of this approach are not hardcoded into our tools; we are just explaining how it is currently being done. If this section is confusing, the best remedy is probably to read <a href=http://www.cs.nyu.edu/~mohri/pub/hbka.pdf> "Speech Recognition with Weighted Finite-State Transducers" </a> by Mohri et al. Be warned: that paper is quite long, and reading it will take at least a few hours for those not already familiar with FSTs. Another good resource is the <a href=http://www.openfst.org> OpenFst website </a> which will provide more context on things like symbol tables. \section graph_symtab Preparing the initial symbol tables We need to prepare the OpenFst symbol tables words.txt and phones.txt. These assign integer id's to all the words and phones in our system. Note that OpenFst reserves symbol zero for epsilon. An example of how the symbol tables look for the WSJ task is: \verbatim ## head words.txt <eps> 0 !SIL 1 <s> 2 </s> 3 <SPOKEN_NOISE> 4 <UNK> 5 <NOISE> 6 !EXCLAMATION-POINT 7 "CLOSE-QUOTE 8 ## tail -2 words.txt }RIGHT-BRACE 123683 #0 123684 ## head data/phones.txt <eps> 0 SIL 1 SPN 2 NSN 3 AA 4 AA_B 5 \endverbatim The words.txt file contains the single disambiguation symbol "#0" (used for epsilon on the input of G.fst). This is the last-numbered word in our recipe. Be careful with this if your lexicon contains a word "#0". The phones.txt file does not contain disambiguation symbols but after creating L.fst we will create a file phones_disambig.txt that has the disambiguation symbols in (this is just useful for debugging). \section graph_lexicon Preparing the lexicon L First we create a lexicon in text format, initially without disambiguation symbols. Our C++ tools will never interact with this, it will just be used by a script that creates lexicon FST. A small part of our WSJ lexicon is: \verbatim ## head data/lexicon.txt !SIL SIL <s> </s> <SPOKEN_NOISE> SPN <UNK> SPN <NOISE> NSN !EXCLAMATION-POINT EH2_B K S K L AH0 M EY1 SH AH0 N P OY2 N T_E "CLOSE-QUOTE K_B L OW1 Z K W OW1 T_E \endverbatim The beginning, ending and stress markers on the phones (e.g. T_E, or AH0) are specific to our WSJ recipe and as far as our toolkit is concerned, they are treated as distinct phones (however, we do handle the tree-building specially for this setup; read about the roots file in \ref tree_building). Notice that we allow words with empty phonetic representations. This lexicon will be used to create the L.fst used in training (without disambiguation symbols). We also create a lexicon with disambiguation symbols, used in decoding-graph creation. An extract of this file is here: \verbatim # [from data/lexicon_disambig.txt] !SIL SIL <s> #1 </s> #2 <SPOKEN_NOISE> SPN #3 <UNK> SPN #4 <NOISE> NSN ... {BRACE B_B R EY1 S_E #4 {LEFT-BRACE L_B EH1 F T B R EY1 S_E #4 \endverbatim This file is created by a script; the script outputs the number of disambiguation symbols it had to add, and this is used to create the symbol table phones_disambig.txt. This is the same as phones.txt but it also contains the integer id's for the disambiguation symbols \#0, \#1, \#2 and so on (\#0 is a special disambiguation symbol which comes from G.fst but will be "passed through" L.fst via self-loops). A section of the middle of the file phones_disambig.txt is: \verbatim ZH_E 338 ZH_S 339 #0 340 #1 341 #2 342 #3 343 \endverbatim The numbers are so high because in this (WSJ) recipe we added stress and position information to the phones. Note that the disambiguation symbols used for the empty words (i.e. \<s\> and \</s\>) have to be distinct from those used for the normal words, so the "normal" disambiguation symbols in this example start from \#3. The command to convert the lexicon without disambiguation symbols into an FST is: \verbatim scripts/make_lexicon_fst.pl data/lexicon.txt 0.5 SIL | \ fstcompile --isymbols=data/phones.txt --osymbols=data/words.txt \ --keep_isymbols=false --keep_osymbols=false | \ fstarcsort --sort_type=olabel > data/L.fst \endverbatim Here, the script make_lexicon_fst.pl creates the text representation of the FST. The 0.5 is the silence probability (i.e. at the beginning of sentence and after each word, we output silence with probability 0.5; the probability mass assigned to having no silence is 1.0 - 0.5 = 0.5. The rest of the commands in this example relate to converting the FST into compiled form; fstarcsort is necessary because we are going to compose later. The structure of the lexicon is roughly as one might expect. There is one state (the "loop state") which is final. There is a start state that has two transitions to the loop state: one with silence and one without. From the loop state there is a transition corresponding to each word, and that word is the output symbol on the transition; the input symbol is the first phone of that word. It is important both for the efficiency of composition and the effectiveness of minimization that the output symbol should be as early as possible (i.e. at the beginning not the end of the word). At the end of each word, to handle optional silence, the transition corresponding to the last phone is in two forms: one to the loop state and one to the "silence state" which has a transition to the loop state. We don't bother putting optional silence after silence words, which we define as words that have just one phone that is the silence phone. Creating the lexicon with disambiguation symbols is just slightly more complicated. The issue is that we have to add the self-loops to the lexicon so that the disambiguation symbol \#0 from G.fst can be passed through the lexicon. We do this with the program fstaddselfloops (c.f. \ref fst_algo_disambig), although we could easily have done it "manually" in the script make_lexicon_fst.pl. \verbatim phone_disambig_symbol=`grep \#0 data/phones_disambig.txt | awk '{print $2}'` word_disambig_symbol=`grep \#0 data/words.txt | awk '{print $2}'` scripts/make_lexicon_fst.pl data/lexicon_disambig.txt 0.5 SIL | \ fstcompile --isymbols=data/phones_disambig.txt --osymbols=data/words.txt \ --keep_isymbols=false --keep_osymbols=false | \ fstaddselfloops "echo $phone_disambig_symbol |" "echo $word_disambig_symbol |" | \ fstarcsort --sort_type=olabel > data/L_disambig.fst \endverbatim The program fstaddselfloops is not one of the original OpenFst command-line tools, it is one of our own (we have a number of such programs). \section graph_grammar Preparing the grammar G The grammar G is for the most part an acceptor (i.e. input and output symbols are identical on each arc) with words as its symbols. The exception is the disambiguation symbol \#0 which only appears on the input side. Assuming the input is an Arpa file, we use the Kaldi program arpa2fst to convert it to an FST. The program arpa2fst outputs an FST with embedded symbols. In Kaldi we generally use FSTs without embedded symbols (i.e. we use separate symbol tables). The steps we have to do aside from just running arpa2fst are as follows: - We have to remove the embedded symbols from the FST (and rely on the symbol tables on disk). - We have to make sure there are no out-of-vocabulary words in the language model - We have to remove "illegal" sequences of the start and end-of-sentence symbols, e.g. \<s\> followed by \</s\>, because these cause L o G to be non-determinizable. - We have to replace epsilons on the input side with the special disambiguation symbol \#0. A slightly simplified version of the actual script that does this is as follows: \verbatim gunzip -c data_prep/lm.arpa.gz | \ arpa2fst --disambig-symbol=#0 \ --read-symbol-table=data/words.txt - data/G.fst \endverbatim The last command (fstisstochastic) is a diagnostic step (see \ref fst_algo_stochastic). In one typical example, it prints out the numbers: \verbatim 9.14233e-05 -0.259833 \endverbatim The first number is small, so it confirms that there is no state that has the probability mass of its arcs plus final-state significantly less than one. The second number is significant, and this means that there are states that have "too much" probability mass (the numeric values of the weights in the FSTs can generally be interpreted as negated log probabilities). Having some states with "too much" probability mass is normal for the FST representations of language models with backoff. During later graph creation steps we will be verifying that this non-stochasticity has not become worse than it was at the start. The resulting FST G.fst is of course only used in test time. In training time we use linear FSTs generated from the training word-sequences, but this is done inside Kaldi processes, not at the script level. \section graph_lg Preparing LG When composing L with G, we adhere in outline to a fairly standard recipe, i.e. we compute min(det(L o G)). The command line is as follows: \verbatim fsttablecompose data/L_disambig.fst data/G.fst | \ fstdeterminizestar --use-log=true | \ fstminimizeencoded | fstpushspecial | \ fstarcsort --sort-type=ilabel > somedir/LG.fst \endverbatim There are some small differences from OpenFst's algorithms. We use a more efficient composition algorithm (see \ref fst_algo_composition) implemented by our command-line tool "fsttablecompose". Our determinization is an algorithm that also removes epsilons, implemented by the command-line program fstdeterminizestar. The option --use-log=true asks the program to first cast the FST to the log semiring; this preserves stochasticity (in the log semiring); see \ref fst_algo_stochastic. We do minimization with the program "fstminimizeencoded". This is mostly the same as the version of OpenFst's minimization algorithm that applies to weighted acceptors; the only change relevant here is that it avoids pushing weights, hence preserving stochasticity (see \ref fst_algo_minimization for details). The program "fstpushspecial" is similar to OpenFst's "fstpush" program, but if the weights don't sum to one it ensures that all the states "sum to" the same value (possibly different from one), rather than trying to push the "extra" weight to the start or end of the graph. This has the advantage that it can never fail ("fstpush" can fail or loop for a very long time if the FST "sums to" infinity); it is also much faster. See push-special.cc for more detailed documentation. The "fstarcsort" stage sorts the arcs in a way that will help later composition operations to be fast. \section graph_clg Preparing CLG To get a transducer whose inputs are context-dependent phones, we need to prepare an FST called CLG, which is equivalent to C o L o G, where L and G are the lexicon and grammar and C represents the phonetic context. For a triphone system, the input symbols of C would be of the form a/b/c (i.e. triples of phones), and the output symbols would be single phones (e.g. a or b or c). See \ref tree_window for more context on the phonetic context windows, and how we generalize to different context sizes. Firstly, we describe how we would create the context FST C if we were to make it by itself and compose normally (our scripts do not actually work this way, for efficiency and scalability reasons). \subsection graph_c Making the context transducer In this section we explain how we can obtain C as a standalone FST. The basic structure of C is that it has states for all possible phone windows of size N-1 (c.f. \ref tree_window; N=3 in the triphone case). The first state, meaning begin-of-utterance, would just correspond to N-1 epsilons. Each state has a transition for each of the phones (let's forget about self-loops for now). As a generic example, state a/b has a transition with c on the output and a/b/c on the input, going to state b/c. There are special cases at the begin and end of utterance. At the beginning of utterance, suppose the state is \<eps\>/\<eps\> and the output symbol is a. Normally, the input symbol would be \<eps\>/\<eps\>/a. But this doesn't represent a phone since (assuming P = 1), the central element is \<eps\> which is not a phone. In this case we let the input symbol of the arc be #-1 which is a special symbol we introduce for this purpose (we don't use epsilon here as the standard recipe does, as it can lead to nondeterminizability when there are empty words). The end-of-utterance case is a little complicated. The context FST has, on the right (its output side), a special symbol $ that occurs at the end of utterances. Consider the triphone case. At the end of utterance, after seeing all symbols we need to flush out the last triphone (e.g. a/b/\<eps\>, where \<eps\> represents undefined context). The natural way to do this would be to have a transition with a/b/\<eps\> on its input and \<eps\> on its output, from the state a/b to a final state (e.g. b/\<eps\> or a special final state). But this is inefficient for composition, because if it was not the end of the utterance we would have to explore such transitions before finding them pruned away. Instead we use $ as the end-of-utterance symbol, and make sure it appears once at the end of each path in LG. Then we replace \<eps\> with $ on the output of C. In general the number of repetitions of $ is equal to N-P-1. In order to avoid the hassle having to work out how many subsequential symbols to add to LG, we just allow it to accept any number of such symbols at the end of utterance. This is acheived by the function AddSubsequentialLoop() and the command-line program fstaddsubsequentialloop. If we wanted C on its own, we would first need a list of disambiguation symbols; and we would also need to work out an unused symbol id we could use for the subsequential symbol, as follows: \verbatim grep '#' data/phones_disambig.txt | awk '{print $2}' > $dir/disambig_phones.list subseq_sym=`tail -1 data/phones_disambig.txt | awk '{print $2+1;}'` \endverbatim We could then create C with the following command (however, see below regarding fstcomposecontext; we don't do this in practice as it is inefficient). \verbatim fstmakecontextfst --read-disambig-syms=$dir/disambig_phones.list \ --write-disambig-syms=$dir/disambig_ilabels.list data/phones.txt $subseq_sym \ $dir/ilabels | fstarcsort --sort_type=olabel > $dir/C.fst \endverbatim The program fstmakecontextfst needs the list of phones, a list of disambiguation symbols and the identity of the subsequential symbol. In addition to C.fst, it writes out the file "ilabels" that interprets the symbols on the left of C.fst (see \ref tree_ilabel). The composition with LG can be done as follows: \verbatim fstaddsubsequentialloop $subseq_sym $dir/LG.fst | \ fsttablecompose $dir/C.fst - > $dir/CLG.fst \endverbatim For printing out C.fst and anything using the same symbols that index "ilabels", we can make a suitable symbol table using the following command: \verbatim fstmakecontextsyms data/phones.txt $dir/ilabels > $dir/context_syms.txt \endverbatim This command knows about the "ilabels" format (\ref tree_ilabel). An example random path through the CLG fst (for Resource Management), printed out with this symbol table, is as follows: \verbatim ## fstrandgen --select=log_prob $dir/CLG.fst | \ fstprint --isymbols=$dir/context_syms.txt --osymbols=data/words.txt - 0 1 #-1 <eps> 1 2 <eps>/s/ax SUPPLIES 2 3 s/ax/p <eps> 3 4 ax/p/l <eps> 4 5 p/l/ay <eps> 5 6 l/ay/z <eps> 6 7 ay/z/sil <eps> 7 8 z/sil/<eps> <eps> 8 \endverbatim \subsection graph_compose_c Composing with C dynamically In the normal graph creation recipe, we use a program fstcomposecontext which dynamically creates the needed states and arcs of C without wastefully creating it all. The command line is: \verbatim fstcomposecontext --read-disambig-syms=$dir/disambig_phones.list \ --write-disambig-syms=$dir/disambig_ilabels.list \ $dir/ilabels < $dir/LG.fst >$dir/CLG.fst \endverbatim If we had different context parameters N and P than the defaults (3 and 1), we would supply extra options to this program. This program writes the file "ilabels" (see \ref tree_ilabel) which interprets the input symbols of CLG.fst. The first few lines of an ilabels file from the Resource Management recipe are as follows: \verbatim 65028 [ ] [ 0 ] [ -49 ] [ -50 ] [ -51 ] [ 0 1 0 ] [ 0 1 1 ] [ 0 1 2 ] ... \endverbatim The number 65028 is the number of elements in the file. Lines like [ -49 ] are for disambiguation symbols; lines like [ 0 1 2 ] represent acoustic contexts windows; the first two entries are [ ] which is for epsilon (never used), and [ 0 ] which is for the special disambiguation symbol with printed form \#-1 that we use at the beginning of C in place of epsilon, to ensure determinizability. \subsection graph_change_ilabel Reducing the number of context-dependent input symbols After creating CLG.fst, there is an optional graph creation stage that can reduce its size. We use the program make-ilabel-transducer, which works out from the decision tree and the HMM topology information, which subsets of context-dependent phones would correspond to the same compiled graph and can therefore be merged (we pick an arbitrary element of each subset and convert all context windows to that context window). This is a similar concept to HTK's logical-to-physical mapping. The command is: \verbatim make-ilabel-transducer --write-disambig-syms=$dir/disambig_ilabels_remapped.list \ $dir/ilabels $tree $model $dir/ilabels.remapped > $dir/ilabel_map.fst \endverbatim This program requires the tree and the model; it outputs a new ilabel_info object called "ilabels.remapped"; this is in the same format as the original "ilabels" file, but has fewer lines. The FST "ilabel_map.fst" is composed with CLG.fst and remaps the labels. After doing this we determinize and minimize so we can immediately realize any size reductions: \verbatim fstcompose $dir/ilabel_map.fst $dir/CLG.fst | \ fstdeterminizestar --use-log=true | \ fstminimizeencoded > $dir/CLG2.fst \endverbatim For typical setups this stage does not actually reduce the graph size by very much (5\% to 20\% reduction is typical), and in any case it is only the size of intermediate graph-creation stages that we are reducing by this mechanism. But the savings could become significant for systems with wider context. \section graph_h Making the H transducer In the conventional FST recipe, the H transducer is the transducer that has, on its output, context dependent phones, and on its input, symbols representing acoustic states. In our case, the symbol on the input of H (or HCLG) is not the acoustic state (in our terminology, the pdf-id) but instead something we call the transition-id (see \ref transition_model_identifiers). The transition-id encodes the pdf-id plus some other information including the phone. Each transition-id can be mapped to a pdf-id. The H transducer that we create does not encode the self-loops. These are added later by a separate program. The H transducer has a state that is both initial and final, and from this state there is a transition for every entry but the zeroth one in the ilabel_info object (the ilabels file, see above). The transitions for the context dependent phones go to structures for the corresponding HMMs (lacking self-loops), and then back to the start state. For the normal topology, these structures for the HMMs would just be linear sequences of three arcs. H also has self-loops on the initial state for each of the disambiguation symbols (\#-1, \#0, \#1, \#2, \#3 and so on). The section of script that makes the H transducer (we call it Ha because it lacks self-loops at this point), is: \verbatim make-h-transducer --disambig-syms-out=$dir/disambig_tstate.list \ --transition-scale=1.0 $dir/ilabels.remapped \ $tree $model > $dir/Ha.fst \endverbatim There is an optional argument to set the transition scale; in our current training scripts, this scale is 1.0. This scale only affects the parts of the transitions that do not relate to self-loop probabilities, and in the normal topology (Bakis model) it has no effect at all; see \ref hmm_scale for more explanation. In addition to the FST, the program also writes a list of disambiguation symbols which must be removed later. \section graph_hclg Making HCLG The first step in making the final graph HCLG is to make the HCLG that lacks self-loops. The command in our current script is as follows: \verbatim fsttablecompose $dir/Ha.fst $dir/CLG2.fst | \ fstdeterminizestar --use-log=true | \ fstrmsymbols $dir/disambig_tstate.list | \ fstrmepslocal | fstminimizeencoded > $dir/HCLGa.fst \endverbatim Here, CLG2.fst is the version of CLG with a reduced symbol set ("logical" triphones, in HTK terminology). We remove the disambiguation symbols and any easy-to-remove epsilons (see \ref fst_algo_eps), before minimizing; our minimization algorithm is one that avoids pushing symbols and weights (hence preserving stochasticity), and accepts nondeterministic input (see \ref fst_algo_minimization). \section graph_selfloops Adding self-loops to HCLG Adding self-loops to HCLG is done by the following command: \verbatim add-self-loops --self-loop-scale=0.1 \ --reorder=true $model < $dir/HCLGa.fst > $dir/HCLG.fst \endverbatim See \ref hmm_scale for an explanation of how the self-loop-scale of 0.1 is applied (note that it also affects the non-self-loop probabilities). For an explanation of the "reorder" option, see \ref hmm_reorder; the "reorder" option increases decoding speed but is not compatible with the \ref decoder_kaldi "kaldi decoder". The add-self-loops program does not just add self-loops; it may also have to duplicate states and add epsilon transitions in order to ensure that the self-loops can be added in a consistent way. This issue is mentioned in slightly more detail in \ref hmm_reorder. This is the only stage of graph creation that does not preserve stochasticity; it does not preserve it because the self-loop-scale is not 1. So the program fstisstochastic should give the same output for all of G.fst, LG.fst, CLG.fst and HCLGa.fst, but not for HCLG.fst. We do not determinize again after the add-self-loops stage; this would fail because we have already removed the disambiguation symbols. Anyway, this would be slow and we believe that there is nothing further to be gained from determinizing and minimizing at this point. */ } |