Blame view

src/fgmmbin/fgmm-global-acc-stats.cc 5.96 KB
8dcb6dfcb   Yannick Estève   first commit
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
  // fgmmbin/fgmm-global-acc-stats.cc
  
  // Copyright 2009-2011  Microsoft Corporation;  Saarland University
  
  // See ../../COPYING for clarification regarding multiple authors
  //
  // Licensed under the Apache License, Version 2.0 (the "License");
  // you may not use this file except in compliance with the License.
  // You may obtain a copy of the License at
  //
  //  http://www.apache.org/licenses/LICENSE-2.0
  //
  // THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
  // KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED
  // WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE,
  // MERCHANTABLITY OR NON-INFRINGEMENT.
  // See the Apache 2 License for the specific language governing permissions and
  // limitations under the License.
  
  
  #include "base/kaldi-common.h"
  #include "util/common-utils.h"
  #include "gmm/model-common.h"
  #include "gmm/full-gmm.h"
  #include "gmm/diag-gmm.h"
  #include "gmm/mle-full-gmm.h"
  
  
  int main(int argc, char *argv[]) {
    try {
      using namespace kaldi;
  
      const char *usage =
          "Accumulate stats for training a full-covariance GMM.
  "
          "Usage:  fgmm-global-acc-stats [options] <model-in> <feature-rspecifier> "
          "<stats-out>
  "
          "e.g.: fgmm-global-acc-stats 1.mdl scp:train.scp 1.acc
  ";
  
      ParseOptions po(usage);
      bool binary = true;
      std::string update_flags_str = "mvw";
      std::string gselect_rspecifier, weights_rspecifier;
      po.Register("binary", &binary, "Write output in binary mode");
      po.Register("update-flags", &update_flags_str, "Which GMM parameters will be "
                  "updated: subset of mvw.");
      po.Register("gselect", &gselect_rspecifier, "rspecifier for gselect objects "
                  "to limit the #Gaussians accessed on each frame.");
      po.Register("weights", &weights_rspecifier, "rspecifier for a vector of floats "
                  "for each utterance, that's a per-frame weight.");
      po.Read(argc, argv);
  
      if (po.NumArgs() != 3) {
        po.PrintUsage();
        exit(1);
      }
  
      std::string model_filename = po.GetArg(1),
          feature_rspecifier = po.GetArg(2),
          accs_wxfilename = po.GetArg(3);
  
      FullGmm fgmm;
      {
        bool binary_read;
        Input ki(model_filename, &binary_read);
        fgmm.Read(ki.Stream(), binary_read);
      }
  
      AccumFullGmm fgmm_accs;
      fgmm_accs.Resize(fgmm, StringToGmmFlags(update_flags_str));
      
      double tot_like = 0.0, tot_weight = 0.0;
  
      SequentialBaseFloatMatrixReader feature_reader(feature_rspecifier);
      RandomAccessInt32VectorVectorReader gselect_reader(gselect_rspecifier);
      RandomAccessBaseFloatVectorReader weights_reader(weights_rspecifier);
      int32 num_done = 0, num_err = 0;
  
      for (; !feature_reader.Done(); feature_reader.Next()) {
        std::string key = feature_reader.Key();
        const Matrix<BaseFloat> &mat = feature_reader.Value();
        int32 file_frames = mat.NumRows();
        BaseFloat file_like = 0.0,
            file_weight = 0.0; // total of weights of frames (will each be 1 unless
        // --weights option supplied.
        Vector<BaseFloat> weights;
        if (weights_rspecifier != "") { // We have per-frame weighting.
          if (!weights_reader.HasKey(key)) {
            KALDI_WARN << "No per-frame weights available for utterance " << key;
            num_err++;
            continue;
          }
          weights = weights_reader.Value(key);
          if (weights.Dim() != file_frames) {
            KALDI_WARN << "Weights for utterance " << key << " have wrong dim "
                       << weights.Dim() << " vs. " << file_frames;
            num_err++;
            continue;
          }
        }
        
        if (gselect_rspecifier != "") {
          if (!gselect_reader.HasKey(key)) {
            KALDI_WARN << "No gselect information for utterance " << key;
            num_err++;
            continue;
          }
          const std::vector<std::vector<int32> > &gselect =
              gselect_reader.Value(key);
          if (gselect.size() != static_cast<size_t>(file_frames)) {
            KALDI_WARN << "gselect information for utterance " << key
                       << " has wrong size " << gselect.size() << " vs. "
                       << file_frames;
            num_err++;
            continue;
          }
          
          for (int32 i = 0; i < file_frames; i++) {
            BaseFloat weight = (weights.Dim() != 0) ? weights(i) : 1.0;
            if (weight == 0.0) continue;
            file_weight += weight;
            SubVector<BaseFloat> data(mat, i);
            const std::vector<int32> &this_gselect = gselect[i];
            int32 gselect_size = this_gselect.size();
            KALDI_ASSERT(gselect_size > 0);
            Vector<BaseFloat> loglikes;
            fgmm.LogLikelihoodsPreselect(data, this_gselect, &loglikes);
            file_like += weight * loglikes.ApplySoftMax();
            loglikes.Scale(weight);
            for (int32 j = 0; j < loglikes.Dim(); j++)
              fgmm_accs.AccumulateForComponent(data, this_gselect[j], loglikes(j));
          }
        } else { // no gselect...
          for (int32 i = 0; i < file_frames; i++) {
            BaseFloat weight = (weights.Dim() != 0) ? weights(i) : 1.0;
            if (weight == 0.0) continue;
            file_weight += weight;
            file_like += weight *
                fgmm_accs.AccumulateFromFull(fgmm, mat.Row(i), weight);
          }
        }
        KALDI_VLOG(2) << "File '" << key << "': Average likelihood = "
                      << (file_like/file_weight) << " over "
                      << file_weight <<" frames.";
        tot_like += file_like;
        tot_weight += file_weight;
        num_done++;
      }
      KALDI_LOG << "Done " << num_done << " files; "
                << num_err << " with errors.";
      KALDI_LOG << "Overall likelihood per "
                << "frame = " << (tot_like/tot_weight) << " over " << tot_weight
                << " (weighted) frames.";
  
      WriteKaldiObject(fgmm_accs, accs_wxfilename, binary);
      KALDI_LOG << "Written accs to " << accs_wxfilename;
      return (num_done != 0 ? 0 : 1);
    } catch(const std::exception &e) {
      std::cerr << e.what();
      return -1;
    }
  }