Blame view
src/fgmmbin/fgmm-global-gselect-to-post.cc
5.63 KB
8dcb6dfcb first commit |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 |
// fgmmbin/fgmm-global-gselect-to-post.cc // Copyright 2013 Johns Hopkins University (author: Daniel Povey) // See ../../COPYING for clarification regarding multiple authors // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY // KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED // WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE, // MERCHANTABLITY OR NON-INFRINGEMENT. // See the Apache 2 License for the specific language governing permissions and // limitations under the License. #include "base/kaldi-common.h" #include "util/common-utils.h" #include "gmm/full-gmm.h" #include "hmm/posterior.h" int main(int argc, char *argv[]) { try { using namespace kaldi; typedef kaldi::int32 int32; typedef kaldi::int64 int64; const char *usage = "Given features and Gaussian-selection (gselect) information for " "a full-covariance GMM, output per-frame posteriors for the selected " "indices. Also supports pruning the posteriors if they are below " "a stated threshold, (and renormalizing the rest to sum to one) " "See also: gmm-gselect, fgmm-gselect, gmm-global-get-post, " " gmm-global-gselect-to-post " " " "Usage: fgmm-global-gselect-to-post [options] <model-in> <feature-rspecifier> " "<gselect-rspecifier> <post-wspecifier> " "e.g.: fgmm-global-gselect-to-post 1.ubm ark:- 'ark:gunzip -c 1.gselect|' ark:- "; ParseOptions po(usage); BaseFloat min_post = 0.0; po.Register("min-post", &min_post, "If nonzero, posteriors below this " "threshold will be pruned away and the rest will be renormalized " "to sum to one."); po.Read(argc, argv); if (po.NumArgs() != 4) { po.PrintUsage(); exit(1); } std::string model_rxfilename = po.GetArg(1), feature_rspecifier = po.GetArg(2), gselect_rspecifier = po.GetArg(3), post_wspecifier = po.GetArg(4); FullGmm fgmm; ReadKaldiObject(model_rxfilename, &fgmm); double tot_loglike = 0.0, tot_frames = 0.0; int64 tot_posts = 0; SequentialBaseFloatMatrixReader feature_reader(feature_rspecifier); RandomAccessInt32VectorVectorReader gselect_reader(gselect_rspecifier); PosteriorWriter post_writer(post_wspecifier); int32 num_done = 0, num_err = 0; for (; !feature_reader.Done(); feature_reader.Next()) { std::string utt = feature_reader.Key(); const Matrix<BaseFloat> &mat = feature_reader.Value(); int32 num_frames = mat.NumRows(); // typedef std::vector<std::vector<std::pair<int32, BaseFloat> > > Posterior; Posterior post(num_frames); if (!gselect_reader.HasKey(utt)) { KALDI_WARN << "No gselect information for utterance " << utt; num_err++; continue; } const std::vector<std::vector<int32> > &gselect(gselect_reader.Value(utt)); if (static_cast<int32>(gselect.size()) != num_frames) { KALDI_WARN << "gselect information for utterance " << utt << " has wrong size " << gselect.size() << " vs. " << num_frames; num_err++; continue; } double this_tot_loglike = 0; bool utt_ok = true; for (int32 t = 0; t < num_frames; t++) { SubVector<BaseFloat> frame(mat, t); const std::vector<int32> &this_gselect = gselect[t]; KALDI_ASSERT(!gselect[t].empty()); Vector<BaseFloat> loglikes; fgmm.LogLikelihoodsPreselect(frame, this_gselect, &loglikes); this_tot_loglike += loglikes.ApplySoftMax(); // now "loglikes" contains posteriors. if (fabs(loglikes.Sum() - 1.0) > 0.01) { utt_ok = false; } else { if (min_post != 0.0) { int32 max_index = 0; // in case all pruned away... loglikes.Max(&max_index); for (int32 i = 0; i < loglikes.Dim(); i++) if (loglikes(i) < min_post) loglikes(i) = 0.0; BaseFloat sum = loglikes.Sum(); if (sum == 0.0) { loglikes(max_index) = 1.0; } else { loglikes.Scale(1.0 / sum); } } for (int32 i = 0; i < loglikes.Dim(); i++) { if (loglikes(i) != 0.0) { post[t].push_back(std::make_pair(this_gselect[i], loglikes(i))); tot_posts++; } } KALDI_ASSERT(!post[t].empty()); } } if (!utt_ok) { KALDI_WARN << "Skipping utterance " << utt << " because bad posterior-sum encountered (NaN?)"; num_err++; } else { post_writer.Write(utt, post); num_done++; KALDI_VLOG(2) << "Like/frame for utt " << utt << " was " << (this_tot_loglike/num_frames) << " per frame over " << num_frames << " frames."; tot_loglike += this_tot_loglike; tot_frames += num_frames; } } KALDI_LOG << "Done " << num_done << " files; " << num_err << " had errors."; KALDI_LOG << "Overall loglike per frame is " << (tot_loglike / tot_frames) << " with " << (tot_posts / tot_frames) << " entries per frame, " << " over " << tot_frames << " frames"; return (num_done != 0 ? 0 : 1); } catch(const std::exception &e) { std::cerr << e.what(); return -1; } } |