Blame view
src/fgmmbin/fgmm-global-init-from-accs.cc
4.27 KB
8dcb6dfcb first commit |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 |
// fgmmbin/fgmm-global-init-from-accs.cc // Copyright 2015-2017 David Snyder // 2015 Johns Hopkins University (Author: Daniel Povey) // 2015 Johns Hopkins University (Author: Daniel Garcia-Romero) // See ../../COPYING for clarification regarding multiple authors // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY // KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED // WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE, // MERCHANTABLITY OR NON-INFRINGEMENT. // See the Apache 2 License for the specific language governing permissions and // limitations under the License. #include "base/kaldi-common.h" #include "util/common-utils.h" #include "gmm/full-gmm.h" #include "gmm/mle-full-gmm.h" int main(int argc, char *argv[]) { try { using namespace kaldi; typedef int32 int32; MleFullGmmOptions gmm_opts; const char *usage = "Initialize a full-covariance GMM from the accumulated stats. " "This binary is similar to fgmm-global-est, but does not use " "a preexisting model. See also fgmm-global-est. " "Usage: fgmm-global-init-from-accs [options] <stats-in> " "<number-of-components> <model-out> "; bool binary_write = true; ParseOptions po(usage); po.Register("binary", &binary_write, "Write output in binary mode"); gmm_opts.Register(&po); po.Read(argc, argv); if (po.NumArgs() != 3) { po.PrintUsage(); exit(1); } std::string stats_filename = po.GetArg(1), model_out_filename = po.GetArg(3); int32 num_components = atoi(po.GetArg(2).c_str()); AccumFullGmm gmm_accs; { bool binary; Input ki(stats_filename, &binary); gmm_accs.Read(ki.Stream(), binary, true /* add accs. */); } int32 num_gauss = gmm_accs.NumGauss(), dim = gmm_accs.Dim(), tot_floored = 0, gauss_floored = 0, tot_low_occ = 0; FullGmm fgmm(num_components, dim); Vector<BaseFloat> weights(num_gauss); Matrix<BaseFloat> means(num_gauss, dim); std::vector<SpMatrix<BaseFloat> > invcovars; for (int32 i = 0; i < num_components; i++) { BaseFloat occ = gmm_accs.occupancy()(i); weights(i) = occ; Vector<BaseFloat> mean(dim, kSetZero); SpMatrix<BaseFloat> covar(dim, kSetZero); // If the occupancy for a Gaussian is very low, set it to a small value. if (occ < 1e-10) { weights(i) = 1e-10; mean.SetRandn(); Vector<BaseFloat> diag(mean.Dim()); diag.Set(1.0); covar.AddDiagVec(1.0, diag); tot_low_occ++; // This is the typical case. } else { mean.CopyRowFromMat(gmm_accs.mean_accumulator(), i); mean.Scale(1.0 / occ); covar.CopyFromSp(gmm_accs.covariance_accumulator()[i]); covar.Scale(1.0 / occ); covar.AddVec2(-1.0, mean); // subtract squared means. } means.CopyRowFromVec(mean, i); // Floor variance Eigenvalues. BaseFloat floor = std::max( static_cast<BaseFloat>(gmm_opts.variance_floor), static_cast<BaseFloat>(covar.MaxAbsEig() / gmm_opts.max_condition)); int32 floored = covar.ApplyFloor(floor); if (floored) { tot_floored += floored; gauss_floored++; } covar.InvertDouble(); invcovars.push_back(covar); } weights.Scale(1.0 / weights.Sum()); fgmm.SetWeights(weights); fgmm.SetInvCovarsAndMeans(invcovars, means); int32 num_bad = fgmm.ComputeGconsts(); KALDI_LOG << "FullGmm has " << num_bad << " bad GConsts"; if (tot_floored > 0) { KALDI_WARN << tot_floored << " variances floored in " << gauss_floored << " Gaussians."; } if (tot_low_occ > 0) { KALDI_WARN << tot_low_occ << " out of " << num_gauss << " Gaussians had very low occupancy."; } WriteKaldiObject(fgmm, model_out_filename, binary_write); KALDI_LOG << "Written model to " << model_out_filename; } catch(const std::exception &e) { std::cerr << e.what() << ' '; return -1; } } |