Blame view

src/fstext/context-fst.cc 14.5 KB
8dcb6dfcb   Yannick Estève   first commit
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
  // fstext/context-fst.cc
  
  // Copyright      2018  Johns Hopkins University (author: Daniel Povey)
  
  // See ../../COPYING for clarification regarding multiple authors
  //
  // Licensed under the Apache License, Version 2.0 (the "License");
  // you may not use this file except in compliance with the License.
  // You may obtain a copy of the License at
  //
  //  http://www.apache.org/licenses/LICENSE-2.0
  //
  // THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
  // KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED
  // WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE,
  // MERCHANTABLITY OR NON-INFRINGEMENT.
  // See the Apache 2 License for the specific language governing permissions and
  // limitations under the License.
  
  #include "fstext/context-fst.h"
  #include "base/kaldi-error.h"
  
  namespace fst {
  
  
  InverseContextFst::InverseContextFst(
      Label subsequential_symbol,
      const vector<int32>& phones,
      const vector<int32>& disambig_syms,
      int32 context_width,
      int32 central_position):
      context_width_(context_width),
      central_position_(central_position),
      phone_syms_(phones),
      disambig_syms_(disambig_syms),
      subsequential_symbol_(subsequential_symbol) {
  
    {  // This block checks the inputs.
      KALDI_ASSERT(subsequential_symbol != 0
                   && disambig_syms_.count(subsequential_symbol) == 0
                   && phone_syms_.count(subsequential_symbol) == 0);
      if (phone_syms_.empty())
        KALDI_WARN << "Context FST created but there are no phone symbols: probably "
            "input FST was empty.";
      KALDI_ASSERT(phone_syms_.count(0) == 0 && disambig_syms_.count(0) == 0 &&
                   central_position_ >= 0 && central_position_ < context_width_);
      for (size_t i = 0; i < phones.size(); i++) {
        KALDI_ASSERT(disambig_syms_.count(phones[i]) == 0);
      }
    }
  
    // empty vector, will be the ilabel_info vector that corresponds to epsilon,
    // in case our FST needs to output epsilons.
    vector<int32> empty_vec;
    Label epsilon_label = FindLabel(empty_vec);
  
    // epsilon_vec is the phonetic context window we have at the very start of a
    // sequence, meaning "no real phones have been seen yet".
    vector<int32> epsilon_vec(context_width_ - 1, 0);
    StateId start_state = FindState(epsilon_vec);
  
    KALDI_ASSERT(epsilon_label == 0 && start_state == 0);
  
    if (context_width_ > central_position_ + 1 && !disambig_syms_.empty()) {
      // We add a symbol whose sequence representation is [ 0 ], and whose
      // symbol-id is 1.  This is treated as a disambiguation symbol, we call it
      // #-1 in printed form.  It is necessary to ensure that all determinizable
      // LG's will have determinizable CLG's.  The problem it fixes is quite
      // subtle-- it relates to reordering of disambiguation symbols (they appear
      // earlier in CLG than in LG, relative to phones), and the fact that if a
      // disambig symbol appears at the very start of a sequence in CLG, it's not
      // clear exatly where it appeared on the corresponding sequence at the input
      // of LG.
      vector<int32> pseudo_eps_vec;
      pseudo_eps_vec.push_back(0);
      pseudo_eps_symbol_= FindLabel(pseudo_eps_vec);
      KALDI_ASSERT(pseudo_eps_symbol_ == 1);
    } else {
      pseudo_eps_symbol_ = 0;  // use actual epsilon.
    }
  }
  
  
  void InverseContextFst::ShiftSequenceLeft(Label label,
                                            std::vector<int32> *phone_seq) {
    if (!phone_seq->empty()) {
      phone_seq->erase(phone_seq->begin());
      phone_seq->push_back(label);
    }
  }
  
  void InverseContextFst::GetFullPhoneSequence(
      const std::vector<int32> &seq, Label label,
      std::vector<int32> *full_phone_sequence) {
    int32 context_width = context_width_;
    full_phone_sequence->reserve(context_width);
    full_phone_sequence->insert(full_phone_sequence->end(),
                                seq.begin(), seq.end());
    full_phone_sequence->push_back(label);
    for (int32 i = central_position_ + 1; i < context_width; i++) {
      if ((*full_phone_sequence)[i] == subsequential_symbol_) {
        (*full_phone_sequence)[i] = 0;
      }
    }
  }
  
  
  InverseContextFst::Weight InverseContextFst::Final(StateId s) {
    KALDI_ASSERT(static_cast<size_t>(s) < state_seqs_.size());
  
    const vector<int32> &phone_context = state_seqs_[s];
  
    KALDI_ASSERT(phone_context.size() == context_width_ - 1);
  
    bool has_final_prob;
  
    if (central_position_ < context_width_ - 1) {
      has_final_prob = (phone_context[central_position_] == subsequential_symbol_);
      // if phone_context[central_position_] != subsequential_symbol_ then we have
      // pending phones-in-context that we still need to output, so we need to
      // consume more subsequential symbols before we can terminate.
    } else {
      has_final_prob = true;
    }
    return has_final_prob ? Weight::One() : Weight::Zero();
  }
  
  bool InverseContextFst::GetArc(StateId s, Label ilabel, Arc *arc) {
    KALDI_ASSERT(ilabel != 0 && static_cast<size_t>(s) < state_seqs_.size() &&
                 state_seqs_[s].size() == context_width_ - 1);
  
    if (IsDisambigSymbol(ilabel)) {
      // A disambiguation-symbol self-loop arc.
      CreateDisambigArc(s, ilabel, arc);
      return true;
    } else if (IsPhoneSymbol(ilabel)) {
      const vector<int32> &seq = state_seqs_[s];
      if (!seq.empty() && seq.back() == subsequential_symbol_) {
        return false;  // A real phone is not allowed to follow the subsequential
                       // symbol.
      }
  
      // next_seq will be 'seq' shifted left by 1, with 'ilabel' appended.
      vector<int32> next_seq(seq);
      ShiftSequenceLeft(ilabel, &next_seq);
  
      // full-seq will be the full context window of size context_width_.
      vector<int32> full_seq;
      GetFullPhoneSequence(seq, ilabel, &full_seq);
  
      StateId next_s = FindState(next_seq);
  
      CreatePhoneOrEpsArc(s, next_s, ilabel, full_seq, arc);
      return true;
    } else if (ilabel == subsequential_symbol_) {
      const vector<int32> &seq = state_seqs_[s];
  
      if (central_position_ + 1 == context_width_ ||
          seq[central_position_] == subsequential_symbol_) {
        // We already had "enough" subsequential symbols in a row and don't want to
        // accept any more, or we'd be making the subsequential symbol the central phone.
        return false;
      }
  
      // full-seq will be the full context window of size context_width_.
      vector<int32> full_seq;
      GetFullPhoneSequence(seq, ilabel, &full_seq);
  
      vector<int32> next_seq(seq);
      ShiftSequenceLeft(ilabel, &next_seq);
      StateId next_s = FindState(next_seq);
  
      CreatePhoneOrEpsArc(s, next_s, ilabel, full_seq, arc);
      return true;
    } else {
      KALDI_ERR << "ContextFst: CreateArc, invalid ilabel supplied [confusion "
                << "about phone list or disambig symbols?]: " << ilabel;
    }
    return false;  // won't get here.  suppress compiler error.
  }
  
  
  void InverseContextFst::CreateDisambigArc(StateId s, Label ilabel, Arc *arc) {
    // Creates a self-loop arc corresponding to the disambiguation symbol.
    vector<int32> label_info;       // This will be a vector containing just [ -olabel ].
    label_info.push_back(-ilabel);  // olabel is a disambiguation symbol.  Use its negative
                                    // so we can more easily distinguish them from phones.
    Label olabel = FindLabel(label_info);
    arc->ilabel = ilabel;
    arc->olabel = olabel;
    arc->weight = Weight::One();
    arc->nextstate = s;  // self-loop.
  }
  
  void InverseContextFst::CreatePhoneOrEpsArc(StateId src, StateId dest,
                                              Label ilabel,
                                              const vector<int32> &phone_seq,
                                              Arc *arc) {
    KALDI_PARANOID_ASSERT(phone_seq[central_position_] != subsequential_symbol_);
  
    arc->ilabel = ilabel;
    arc->weight = Weight::One();
    arc->nextstate = dest;
    if (phone_seq[central_position_] == 0) {
      // This can happen at the beginning of the graph.  In this case we don't
      // output a real phone, we createdt an epsilon arc (but sometimes we need to
      // use a special disambiguation symbol instead of epsilon).
      arc->olabel = pseudo_eps_symbol_;
    } else {
      // We have a phone in the central position.
      arc->olabel = FindLabel(phone_seq);
    }
  }
  
  StdArc::StateId InverseContextFst::FindState(const vector<int32> &seq) {
    // Finds state-id corresponding to this vector of phones.  Inserts it if
    // necessary.
    KALDI_ASSERT(static_cast<int32>(seq.size()) == context_width_ - 1);
    VectorToStateMap::const_iterator iter = state_map_.find(seq);
    if (iter == state_map_.end()) {  // Not already in map.
      StateId this_state_id = (StateId)state_seqs_.size();
      state_seqs_.push_back(seq);
      state_map_[seq] = this_state_id;
      return this_state_id;
    } else {
      return iter->second;
    }
  }
  
  StdArc::Label InverseContextFst::FindLabel(const vector<int32> &label_vec) {
    // Finds the ilabel corresponding to this vector (creates a new ilabel if
    // necessary).
    VectorToLabelMap::const_iterator iter = ilabel_map_.find(label_vec);
    if (iter == ilabel_map_.end()) {  // Not already in map.
      Label this_label = ilabel_info_.size();
      ilabel_info_.push_back(label_vec);
      ilabel_map_[label_vec] = this_label;
      return this_label;
    } else {
      return iter->second;
    }
  }
  
  
  void ComposeContext(const vector<int32> &disambig_syms_in,
                      int32 context_width, int32 central_position,
                      VectorFst<StdArc> *ifst,
                      VectorFst<StdArc> *ofst,
                      vector<vector<int32> > *ilabels_out,
                      bool project_ifst) {
    KALDI_ASSERT(ifst != NULL && ofst != NULL);
    KALDI_ASSERT(context_width > 0);
    KALDI_ASSERT(central_position >= 0);
    KALDI_ASSERT(central_position < context_width);
  
    vector<int32> disambig_syms(disambig_syms_in);
    std::sort(disambig_syms.begin(), disambig_syms.end());
  
    vector<int32> all_syms;
    GetInputSymbols(*ifst, false/*no eps*/, &all_syms);
    std::sort(all_syms.begin(), all_syms.end());
    vector<int32> phones;
    for (size_t i = 0; i < all_syms.size(); i++)
      if (!std::binary_search(disambig_syms.begin(),
                              disambig_syms.end(), all_syms[i]))
        phones.push_back(all_syms[i]);
  
    // Get subsequential symbol that does not clash with
    // any disambiguation symbol or symbol in the FST.
    int32 subseq_sym = 1;
    if (!all_syms.empty())
      subseq_sym = std::max(subseq_sym, all_syms.back() + 1);
    if (!disambig_syms.empty())
      subseq_sym = std::max(subseq_sym, disambig_syms.back() + 1);
  
    // if central_position == context_width-1, it's left-context, and no
    // subsequential symbol is needed.
    if (central_position != context_width-1) {
      AddSubsequentialLoop(subseq_sym, ifst);
      if (project_ifst) {
        fst::Project(ifst, fst::PROJECT_INPUT);
      }
    }
  
    InverseContextFst inv_c(subseq_sym, phones, disambig_syms,
                            context_width, central_position);
  
    // The following statement is equivalent to the following
    // (if FSTs had the '*' operator for composition):
    //   (*ofst) = inv(inv_c) * (*ifst)
    ComposeDeterministicOnDemandInverse(*ifst, &inv_c, ofst);
  
    inv_c.SwapIlabelInfo(ilabels_out);
  }
  
  void AddSubsequentialLoop(StdArc::Label subseq_symbol,
                            MutableFst<StdArc> *fst) {
    typedef StdArc Arc;
    typedef typename Arc::StateId StateId;
    typedef typename Arc::Weight Weight;
  
    vector<StateId> final_states;
    for (StateIterator<MutableFst<Arc> > siter(*fst); !siter.Done(); siter.Next()) {
      StateId s = siter.Value();
      if (fst->Final(s) != Weight::Zero())  final_states.push_back(s);
    }
  
    StateId superfinal = fst->AddState();
    Arc arc(subseq_symbol, 0, Weight::One(), superfinal);
    fst->AddArc(superfinal, arc);  // loop at superfinal.
    fst->SetFinal(superfinal, Weight::One());
  
    for (size_t i = 0; i < final_states.size(); i++) {
      StateId s = final_states[i];
      fst->AddArc(s, Arc(subseq_symbol, 0, fst->Final(s), superfinal));
      // No, don't remove the final-weights of the original states..
      // this is so we can add the subsequential loop in cases where
      // there is no context, and it won't hurt.
      // fst->SetFinal(s, Weight::Zero());
      arc.nextstate = final_states[i];
    }
  }
  
  void WriteILabelInfo(std::ostream &os, bool binary,
                       const vector<vector<int32> > &info) {
    int32 size = info.size();
    kaldi::WriteBasicType(os, binary, size);
    for (int32 i = 0; i < size; i++) {
      kaldi::WriteIntegerVector(os, binary, info[i]);
    }
  }
  
  
  void ReadILabelInfo(std::istream &is, bool binary,
                      vector<vector<int32> > *info) {
    int32 size = info->size();
    kaldi::ReadBasicType(is, binary, &size);
    info->resize(size);
    for (int32 i = 0; i < size; i++) {
      kaldi::ReadIntegerVector(is, binary, &((*info)[i]));
    }
  }
  
  SymbolTable *CreateILabelInfoSymbolTable(const vector<vector<int32> > &info,
                                           const SymbolTable &phones_symtab,
                                           std::string separator,
                                           std::string initial_disambig) {  // e.g. separator = "/", initial-disambig="#-1"
    KALDI_ASSERT(!info.empty() && info[0].empty());
    SymbolTable *ans = new SymbolTable("ilabel-info-symtab");
    int64 s = ans->AddSymbol(phones_symtab.Find(static_cast<int64>(0)));
    assert(s == 0);
    for (size_t i = 1; i < info.size(); i++) {
      if (info[i].size() == 0) {
        KALDI_ERR << "Invalid ilabel-info";
      }
      if (info[i].size() == 1 &&
         info[i][0] <= 0) {
        if (info[i][0] == 0) {  // special symbol at start that we want to call #-1.
          s = ans->AddSymbol(initial_disambig);
          if (s != i) {
            KALDI_ERR << "Disambig symbol " << initial_disambig
                      << " already in vocab";
          }
        } else {
          std::string disambig_sym = phones_symtab.Find(-info[i][0]);
          if (disambig_sym == "") {
            KALDI_ERR << "Disambig symbol " << -info[i][0]
                      << " not in phone symbol-table";
          }
          s = ans->AddSymbol(disambig_sym);
          if (s != i) {
            KALDI_ERR << "Disambig symbol " << disambig_sym
                      << " already in vocab";
          }
        }
      } else {
        // is a phone-context-window.
        std::string newsym;
        for (size_t j = 0; j < info[i].size(); j++) {
          std::string phonesym = phones_symtab.Find(info[i][j]);
          if (phonesym == "") {
            KALDI_ERR << "Symbol " << info[i][j]
                      << " not in phone symbol-table";
          }
          if (j != 0) newsym += separator;
          newsym += phonesym;
        }
        int64 s = ans->AddSymbol(newsym);
        if (s != static_cast<int64>(i)) {
          KALDI_ERR << "Some problem with duplicate symbols";
        }
      }
    }
    return ans;
  }
  
  
  
  
  }  // end namespace fst